Table of Contents

PART 1 - INTRODUCTION
1.1 General .. 4
1.2 Standard System .. 4
1.3 Features .. 5
1.4 Q46/76 Auto-Clean System Specifications 7
1.5 Q46/76 Performance Specifications 8

PART 2 – ANALYZER MOUNTING
2.1 General .. 9
2.2 Wall or Pipe Mount 9
2.3 Wall Mount Dimensions 10
2.4 Railing Mount .. 12
2.5 Sensor Assembly .. 13
2.6 Sensor Installation 14

PART 3 – ELECTRICAL INSTALLATION
3.1 General .. 16
3.2 Connections .. 16
3.3 Sensor Wiring .. 19
3.4 Q-Blast to Q46 Connection 20
3.5 Analog Output Connections 23
3.6 Relay Connections 23

PART 4 – CONFIGURATION
4.1 User Interface ... 24
4.11 Keys ... 25
4.12 Display .. 25
4.2 Software .. 26
4.21 Software Navigation 27
4.22 Measure Menu [MEASURE] 29
4.23 Calibration Menu [CAL] 30
4.24 Configuration Menu [CONFIG] 30
4.25 Control Menu [CONTROL] 32
4.26 Diagnostics Menu [DIAG] 36

PART 5 – CALIBRATION
5.1 Turbidity Calibration 40
5.11 Cal Zero .. 40
5.12 Cal Span ... 40
5.2 Temperature Calibration 41

PART 6 - SENSOR AUTO-CLEAN SYSTEM
6.1 General .. 43
6.2 Cleaner Sequence .. 43
6.3 Cleaner Programming 44

PART 7 – PID CONTROLLER DETAILS
7.1 PID Description ... 45
7.2 PID Algorithm .. 45
7.3 Classical PID Tuning 47
7.4 Manual PID Override Control 47
7.5 Common PID Pitfalls 47

PART 8 – SYSTEM MAINTENANCE
8.1 General .. 49
8.2 Analyzer Maintenance 49
8.3 Sensor Maintenance 49

PART 9 – TROUBLESHOOTING
9.1 General .. 50
9.2 External ... 50
9.3 Analyzer .. 51
9.31 Display ... 52

SPARE PARTS
.. 53
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Q-BLAST SYSTEM</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2</td>
<td>WALL/PIPE MOUNT BRACKET</td>
<td>10</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Q-BLAST CLEANER DIMENSIONS</td>
<td>11</td>
</tr>
<tr>
<td>Figure 5</td>
<td>HANDRAIL MOUNTING ASSEMBLY</td>
<td>12</td>
</tr>
<tr>
<td>Figure 6</td>
<td>SENSOR ASSEMBLY</td>
<td>13</td>
</tr>
<tr>
<td>Figure 7</td>
<td>SENSOR MOUNTING ASSEMBLY</td>
<td>14</td>
</tr>
<tr>
<td>Figure 8</td>
<td>SENSOR MOUNTING DETAIL</td>
<td>15</td>
</tr>
<tr>
<td>Figure 9</td>
<td>ELECTRICAL CONNECTIONS</td>
<td>17</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Q-BLAST CONNECTIONS</td>
<td>18</td>
</tr>
<tr>
<td>Figure 11</td>
<td>TURBIDITY SENSOR CONNECTION</td>
<td>19</td>
</tr>
<tr>
<td>Figure 12</td>
<td>ELECTRICAL CONNECTIONS</td>
<td>21</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Q-BLAST CONNECTIONS W/OPTIONAL J-BOX</td>
<td>22</td>
</tr>
<tr>
<td>Figure 14</td>
<td>USER INTERFACE</td>
<td>24</td>
</tr>
<tr>
<td>Figure 15</td>
<td>SOFTWARE MAP</td>
<td>28</td>
</tr>
<tr>
<td>Figure 17</td>
<td>ALARM RELAY EXAMPLES</td>
<td>35</td>
</tr>
<tr>
<td>Figure 18</td>
<td>ISA PID EQUATION</td>
<td>45</td>
</tr>
<tr>
<td>Figure 19</td>
<td>DISPLAY MESSAGES</td>
<td>52</td>
</tr>
</tbody>
</table>
Part 1 - Introduction

1.1 General

The Auto-Clean version of the Model Q46/76 is an on-line monitoring system designed for the continuous measurement of turbidity in water and includes an air-blast sensor cleaning system. It is intended for continuous monitoring of raw water, wastewater effluent, or other turbidity applications where sample conditions dictate regular sensor cleaning.

The full scale operating range of the system 0-400 NTU. Actual display range is user programmable for 0-2, 0-20, 0-200 or 0-400 NTU, and the system can also be programmed to display in units of PSL for applications where polystyrene latex spheres are the standard of measurement. The basic sensing element used in the turbidity system is an optical sensor measuring light scattered at 90 degrees to the transmitted beam. The sensor provides an auto-zeroing function to insure the highest sensitivity at very low turbidity levels.

Q46/76 Monitors are available in two electronic versions, an AC powered monitor with integral alarm relays and dual 4-20 mA output capability, and a 12-24 VDC unit with dual output and relays. Options are available to add either a third 4-20 mA output or 3 additional low power SPST relays. In addition, a digital output option for Profibus, Modbus, or Ethernet is available.

1.2 Standard System

The Model Q46/76 Autoclean system includes three main components, a NEMA 4X electronics unit, the “Q-Blast” NEMA 4X Air-Blast cleaning assembly, and a submersible Turbidity Probe with cleaner nozzle. Probes are design for direct immersion in an aeration tank or flowing stream. Probes come with a standard 30 ft. cable and connect directly to the Q46/76 Analyzer. A separate tubing connection located on the Q-Blast assembly is provided for connection of a 30 foot length of plastic tubing (supplied with the unit). A typical system is shown in Figure 1.

Note that Error! Reference source not found. shows the Turbidity Analyzer and Q-Blast cleaner mounted on ATI’s optional panel assembly with power distribution box. The panel and power distribution box are not part of standard systems, and must be ordered separately using part number (00-1637).

The Probe assembly is mounted to a 1” pipe using a special mounting adapter supplied as part of the 00-0624 mounting assembly. The 1” pipe is attached to the tank handrail with a bracket assembly that holds the sensor at a slight angle in the tank.

Once installed and placed into operation, the Q46/76 Auto-Clean system will provide months of reliable measurement in almost any application. Probes should be checked for build-up after the first 3 months to verify that the cleaner is keeping the sensor clean. However, sensor maintenance intervals of 6 months or more are likely in most aeration tanks.

The sensor automatic cleaning frequency is user programmable, and units are shipped with a default cleaning frequency of once every 24 hours. This frequency has proven sufficient for most aeration applications, but can be increased if needed for a specific application. A cleaning frequency of more than every 2 hours is not recommended. Contact your ATI representative for more information if an 8-hour cleaning cycle does not keep the sensor clean.
1.3 Features

- Standard Q46 electronic transmitters are designed to be a fully isolated instruments for operation from either 90-260 VAC or 12-24 VDC power supplies.

- Two 4-20 mA analog outputs are standard. One output may be configured for PID control, while other output is programmable to track either Turbidity or Temperature.

- Selectable PID controller on main analog output.

- Digital communication option for Profibus-DP, Modbus-RTU, Modbus TCP/IP, or Ethernet-IP.

- Output Hold, Output Simulate, Output Alarm, and Output Delay Functions. All forced changes in output condition include bumpless transfer to provide gradual return to on-line signal levels and to avoid system control shocks on both analog outputs.

- Units provide provides three SPDT relay outputs and two isolated analog outputs. Software settings for relay control include setpoint, deadband, phase, delay, and failsafe.

- Selectable Output Fail Alarm feature on Relay C allows system diagnostic failures to be sent to external monitoring systems.

- Large, high contrast, custom LCD display with LED back light provides excellent readability in any light conditions. The secondary line of display utilizes 5x7 dot matrix characters for clear message display two of four measured parameters may be on the display simultaneously.

- Diagnostic messages provide a clear description of any problem with no confusing error codes to look up. Messages are also included for diagnosing calibration problems.

- Security lock feature to prevent unauthorized tampering with transmitter settings. All settings can be viewed while locked, but they cannot be changed.

Equipment bearing this marking may not be discarded by traditional methods in the European community after August 12 2005 per EU Directive 2002/96/EC. End users must return old equipment to the manufacturer for proper disposal.
(System Diagram Shown on Optional Mounting Plate w/Power Distribution Box)

Figure 1 - Q-Blast System
1.4 Q46/76 Auto-Clean System Specifications

Main Parameter Ranges
Manual selection of one of the following display ranges, 0-2.000, 0-20.00, 0-200.0, or 0-2000 NTU
Note that the values above 400 on the 0-2000 display range are not valid

Power
90 - 260 VAC, 50/60 Hz., 10 VA Maximum
12-24 VDC, 500 mA max.

Display
0.75” (19.1 mm) high 4-digit main display with sign
12-digit secondary display, 0.3” (7.6 mm) 5x7 dot matrix.
Integral LED back-light for visibility in the dark.

Enclosure
NEMA 4X, polycarbonate, stainless steel hardware.

Analog Outputs
Two 4-20 mA outputs. Output one programmable for NTU Turbidity or PID. Output 2 programmable for NTU or Temperature. Max load 450 Ohms for output 1 and 1000 ohms for output 2. Outputs ground isolated and isolated from each other. An additional 3rd analog option is available.

Output Isolation
600 V galvanic isolation

Optional Digital Output
Profibus-DP, Modbus-RTU, or Ethernet-IP available.

Relays, Electromechanical
Three SPDT, 6 amp @ 250 VAC, 5 amp @ 24 VDC contacts. Software selection for setpoint, phase, delay, deadband, hi-lo alarm, and failsafe. A-B indicators on main LCD, and C indicator on lower display.

Weight
Electronics Assembly: 2.4 lbs. (1.1 kg)
Sensor Assembly: 2.5 lbs. (1.3 kg.)

Ambient Temperature
Analyzer Service, -20 to 60 °C (-4 to 140 °F)
Sensor Service, 0 to 55°C (23 to 131 °F)
Storage, -30 to 70 °C (-22 to 158 °F)

Ambient Humidity
0 to 95%, non-condensing

Altitude
Up to 2000 m (6562 ft)

Location
Designed for hazardous and non-hazardous areas

EMI/RFI Influence
Designed to EN 61326-1

Sensor
Optical 90 degree scatter

Sensor Materials
PVC and acrylic

Sensor Cable
Submersible: 30 ft. (10 m)

Max. Sensor Cable Length
500 feet (153 m), with junction box
1.5 Q46/76 Performance Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.5% of range or 0.03 NTU</td>
</tr>
<tr>
<td>Repeatability</td>
<td>0.3% of range or 0.02 NTU</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.1% of selected range</td>
</tr>
<tr>
<td>Non-linearity</td>
<td>0.1% of selected range</td>
</tr>
<tr>
<td>Warm-up Time</td>
<td>30 seconds to rated performance (electronics only)</td>
</tr>
<tr>
<td>Supply Voltage Effects</td>
<td>± 0.1% span</td>
</tr>
<tr>
<td>Instrument Response Time</td>
<td>60 seconds to 90% of step input at lowest damping</td>
</tr>
</tbody>
</table>

1.6 Q-Blast Assembly

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>90-260 VAC, 50/60 Hz., 10 VA Maximum</td>
</tr>
<tr>
<td></td>
<td>12-24 VDC, 500 mA max.</td>
</tr>
<tr>
<td>Enclosure</td>
<td>NEMA 4X, IP-66 polycarbonate, stainless steel hardware.</td>
</tr>
<tr>
<td>Compressor</td>
<td>12 VDC Diaphragm Type, 28 PSI (1.9 Bar) Maximum</td>
</tr>
<tr>
<td>Heater</td>
<td>Internal thermostatically controlled.</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>Operating, -40 to 60 °C (-40 to 140 °F)</td>
</tr>
<tr>
<td></td>
<td>Storage, -40 to 70 °C (-40 to 158 °F)</td>
</tr>
<tr>
<td>Max. Air Tubing Length</td>
<td>60 feet (18.2 m)</td>
</tr>
<tr>
<td>Air Accumulator</td>
<td>Powder coated stainless steel</td>
</tr>
<tr>
<td>Weight</td>
<td>3.7 lbs. (1.7 kg)</td>
</tr>
</tbody>
</table>
Part 2 – Analyzer Mounting

2.1 General

The Q46 Auto-Clean pH System consists of two assemblies housed in NEMA 4X (IP-66) enclosures. The analyzer electronics and the Q-Blast cleaner assembly should both be mounted near the sensor location, with a maximum of 30 feet between the monitor/cleaner and the sensor. The standard system is supplied with a 30 ft. sensor cable and 30 feet of air line tubing. Best performance is obtained by keeping sensor cable and air tubing length as short as practical.

Installation of a complete Q46 Auto-Clean System requires mounting both the analyzer electronics and the cleaner assembly, mounting the sensor assembly, and running a 3-conductor interconnect wire between the analyzer and cleaner assemblies. Both the analyzer and the Q-Blast assembly require power connection. If the system is purchased with optional mounting plate and power distribution box, interconnect wiring will already be complete and only one power connection is required at the junction box.

The analyzer enclosure and the cleaner enclosure may be mounted to any flat surface, like a wall or plate. A bracket assembly is available (#00-0930) for mounting a flat PVC, aluminum, or stainless steel plate to hold the two enclosures to typical aeration handrail systems. This bracket locates the monitor at a convenient height for viewing the display and using the controls.

2.2 Wall or Pipe Mount

A PVC mounting bracket with attachment screws is supplied with each transmitter see Figure 2 for dimensions. The multi-purpose bracket is attached to the rear of the enclosure using the four flat head screws. The instrument is then attached to the wall using the four outer mounting holes in the bracket. These holes are slotted to accommodate two sizes of u-bolt that may be used to pipe mount the unit. Slots will accommodate u-bolts designed for 1½ “or 2” pipe. The actual center to center dimensions for the u-bolts are shown in the drawing. Note that these slots are for u-bolts with 1/4-20 threads. The 1½” pipe u-bolt (2” I.D. clearance) is available from ATI in type 304 stainless steel under part number (47-0004).
Figure 2 - Wall/Pipe Mount Bracket

2.3 Wall Mount Dimensions

Figure 3 shows the dimensions of the analyzer dimensions. Note that the enclosure mounting brackets are not installed at the factory. They are supplied separately and must be attached using the screws provided. This is done to protect the brackets against shipping damage.

Figure 4 shows the dimensions of the Q-Blast assembly. This enclosure should be mounted beside the analyzer enclosure as shown in Figure 4. If the optional mounting plate and power junction box were purchased, the analyzer and cleaner will be supplied mounted to the plate.
Figure 3 - Wall Mount Analyzer Dimensions

Figure 3 - Q-Blast Cleaner Dimensions
2.4 **Railing Mount**

Figure 5 shows the optional mounting assembly (on system mounting plate) used to mount the analyzer and cleaner assembly to a typical safety handrail that surrounds many aeration tanks. This bracket assembly consists of vertical channels attached to the handrail with u-bolts. The monitor screws to the channels with the 10-32 screws supplied as part of the kit. U-bolts for 2” diameter handrail pipe are also supplied.

Figure 4 - Handrail Mounting Assembly
2.5 Sensor Assembly

The turbidity sensor is contained in a housing that acts as a light shield and also directs the cleaning air across the face of the sensor. Figure 6 shows an exploded view of that assembly. The sensor is already installed in the Autoclean holder when shipped from the factory. The adapter is part of the optional mounting assembly shown in Figure 6. It is not normally necessary to remove the sensor from the holder. If you do need to remove the sensor, the air delivery fitting and washer must first be removed. The washer acts as a stop to keep the sensor from sliding out of the holder at the back.

Figure 5 - Sensor Assembly
2.6 Sensor Installation

Applications for Auto-Clean turbidity monitoring are done using a submersible sensor. Submersible sensors are mounted to a 1" pipe using a standard 1" PVC thread by thread pipe coupling. The mounting pipe can be secured to standard 1½" or 2" pipe rail using a mounting bracket kit available from ATI (part number 00-0624) as shown in Figure 7 & Figure 8.

Figure 6 - Sensor Mounting Assembly
Figure 7 - Sensor Mounting Detail
Part 3 – Electrical Installation

3.1 General

Q46 Auto-Clean analyzers and Q-Blast cleaners are powered from 90-260 VAC, 50/60 Hz. or 12-24 VDC. Systems can draw up to 0.5 amps when the internal air compressor activates as part of the sensor cleaning system. Normal current draw is less than 0.2 amps when the cleaner is off.

Important Notes:

1. Use wiring practices that conform to all national, state and local electrical codes. For proper safety as well as stable measuring performance, it is important that the earth ground connection be made to a solid ground point from TB1.

2. Do NOT run sensor cables or instrument 4-20 mA output wiring in the same conduit that contains AC power wiring. AC power wiring should be run in a dedicated conduit to prevent electrical noise from coupling with the instrumentation signals.

3.2 Connections

Auto-Clean systems are generally AC powered, although a DC powered system is available. Power connections are made to terminal TB7 in the monitor (Figure 8) and to TB1 in the Q-Blast assembly (Figure 9).

AC or DC power should be brought into the enclosures through the bottom gland seal on the right side of the enclosure. This entry is directly above the power terminal blocks. Terminal blocks are pluggable, and can be removed for easy wire connection.
Figure 8 - Electrical Connections
Figure 9 - Q-blast Connections
3.3 Sensor Wiring

Sensor connections are made to a terminal block mounted on the front section of the monitor. The sensor cable can be quickly connected to the Q46 terminal strip by matching the wire colors on the cable to the color designations on the label in the monitor. Route signal cable away from AC power lines, adjustable frequency drives, motors, or other noisy electrical signal lines. Do not run sensor or signal cables in conduit that contains AC power lines or motor leads.

![Figure 10 - Turbidity Sensor Connection](image-url)
3.4 **Q-Blast to Q46 Connection**

Connections inside the Q-Blast enclosure include power and an interconnect cable running to the Q46 monitor. To access the terminal compartment, loosen the 4 screws holding the cover in place and set the cover aside. The screws are captive and should not come completely out of the plastic cover.

As previously mentioned, power for the Q-Blast connects to TB1. An additional 3-conductor cable must be connected between the Q46 analyzer and the Q-Blast cleaner as shown in Figure 12. The sequencing of the compressor and solenoid are controlled by the Q46, with control signals carried by this cable.

Auto-Clean systems must be installed with the Q-Blast assembly no more than 60 ft. from the sensor, and preferably much closer. However, the Q46 analyzer can be installed up to 500 ft. from the cleaner assembly. This allows the display to be located at a convenient spot somewhat remote from the sensor/cleaner location. When a remote cleaner installation is required, interconnect the analyzer and the cleaner unit with 3-conductor, 22 AWG shielded cable as shown in Figure 13. Do not run the interconnect cable in the same conduit with AC wiring. Note also that a separate junction box is required for the sensor wiring if a remote monitor is to be used. The 3-conductor control wire and the sensor signal wire may be run in the same conduit.
Figure 11 - Electrical Connections
Figure 12 - Q-Blast Connections w/Optional J-Box
3.5 Analog Output Connections

Q46 Auto-Clean systems provide two 4-20 mA outputs. Output connections are made to terminal TB1 as shown in Figure 8.

3.6 Relay Connections

Relay wiring is done to terminal blocks inside the Q46 display assembly. This unit actually contains three SPDT relays, and a bank of three low-power relays that is used to control the activation of the sensor automatic cleaning system. Relays A&B are available for use as either control relays or alarm relays. Relays C is configured as a system failure alarm.

To access the terminals for Relays A, B, and C, open the front protective cover of the analyzer. Loosen the 4 corner screws for the display unit and the front will hinge down. A terminal block labeled TB6 is accessible. The terminal block will unplug for wiring convenience, and the circuit board is screened to indicate the NO, NC and C contacts.

The terminal block labeled TB2 is used to connect leads to relays D, E, and F. These relays are prewired for control of the Q-Blast cleaner.
4.1 User Interface

The user interface for the Q46 Series instrument consists of a custom display and a membrane keypad. All functions are accessed from this user interface (no internal jumpers, pots, etc.).

When power is first applied, you may notice that the display does not come on immediately. This is normal. There is a 5 second start routine that runs before the display illuminates. In addition, you will notice an occasional “flicker” of the display, occurring about twice an hour. This is the result of a display processor refresh program that insures long-term display integrity, and will always occur during normal operation of the instrument.

![User Interface Diagram](image)

Figure 13 - User Interface
4.11 Keys

All user configurations occur through the use of four membrane keys. These keys are used as follows:

MENU/ESC

To scroll through the menu section headers or to escape from anywhere in software. The escape sequence allows the user to back out of any changes in a logical manner. Using the escape key aborts all changes to the current screen and backs the user out one level in the software tree. The manual will refer to this key as either MENU or ESC, depending upon its particular function. In the battery-powered version of the Q46, this is also the ON button.

UP (arrow)

To scroll through individual list or display items and to change number values.

LEFT (arrow)

To move the cursor from right to left during changes to a number value.

ENTER

To select a menu section or list item for change and to store any change.

4.12 Display

The large custom display provides clear information for general measurement use and user configuration. There are three main areas of the display: the main parameter display, the secondary message line, and the icon area.

Main Parameter

During normal operation, the main parameter display indicates the present process input with sign and units. This main display may be configured to display any of the main measurements that the system provides. During configuration, this area displays other useful set-up information to the user.

![Main Parameter Display](image)

Lower Line

During normal operation, the lower line of the display indicates user-selected secondary measurements that the system is making. This also includes calibration data from the last calibration sequence and the transmitter model number and software version. During configuration, the lower line displays menu items and set-up prompts to the user. Finally, the lower line will display error messages when necessary. For a description of all display messages, refer to Section 10.31.

![Lower Line Display](image)

Icon Area

The icon area contains display icons that assist the user in set-up and indicate important states of system functions. The CAL, CONFIG, and
DIAG icons are used to tell the user what branch of the software tree the user is in while scrolling through the menu items. This improves software map navigation dramatically. Upon entry into a menu, the title is displayed (such as CAL), and then the title disappears to make way for the actual menu item. However, the icon stays on.

HOLD

The HOLD icon indicates that the current output of the transmitter has been put into output hold. In this case, the output is locked to the last input value measured when the HOLD function was entered. HOLD values are retained even if the unit power is cycled.

FAIL

The FAIL icon indicates that the system diagnostic function has detected a problem that requires immediate attention. This icon is automatically cleared once the problem has been resolved.

Relay Area A/B

The relay area contains two icons that indicate the state of the system relays. Relay C is normally configured for FAIL indication, so it is only displayed on the lower MEASURE display line.

4.2 Software

The software of the Q46H is organized in an easy to follow menu-based system. All user settings are organized under five menu sections: Measure, Calibration [CAL], Configuration [CONFIG], Control [CONTROL] and Diagnostics [DIAG].

Note: The default Measure Menu is display-only and has no menu icon.
4.21 Software Navigation

Within the CAL, CONFIG, CONTROL, and DIAG menu sections is a list of selectable items. Once a menu section (such as CONFIG) has been selected with the MENU key, the user can access the item list in this section by pressing either the ENTER key or the UP arrow key. The list items can then be scrolled through using the UP arrow key. Once the last item is reached, the list wraps around and the first list item is shown again. The items in the menu sections are organized such that more frequently used functions are first, while more permanent function settings are later in the list. See Figure 15 for a visual description of the software.

Each list item allows a change to a stored system variable. List items are designed in one of two forms: simple single variable, or multiple variable sequences. In the single variable format, the user can quickly modify one parameter - for example, changing temperature display units from °F to °C. In the multiple variable sequence, variables are changed as the result of some process. For example, the calibration of turbidity generally requires more than one piece of information to be entered. The majority of the menu items in the software consist of the single variable format type. Any data that may be changed will be flashing. This flashing indicates user entry mode and is initiated by pressing the ENTER key. The UP arrow key will increase a flashing digit from 0 to 9. The LEFT arrow key moves the flashing digit from right to left. Once the change has been completed, pressing ENTER again stores the variable and stops the flashing. Pressing ESC aborts the change and also exits user entry mode.

The starting (default) screen is always the Measure Menu. The UP arrow key is used to select the desired display. From anywhere in this section the user can press the MENU key to select one of the four Menu Sections.

The UP arrow icon next to all list items on the display is a reminder to scroll through the list using the UP arrow key.

To select a list item for modification, first select the proper menu with the MENU key. Scroll to the list item with the UP arrow key and then press the ENTER key. This tells the system that the user wishes to perform a change on that item. For single item type screens, once the user presses the ENTER key, part or all of the variable will begin to flash, indicating that the user may modify that variable using the arrow keys. However, if the instrument is locked, the transmitter will display the message Locked! and will not enter user entry mode. The instrument must be unlocked by entering the proper code value to allow authorized changes to user entered values. Once the variable has been reset, pressing the ENTER key again causes the change to be stored and the flashing to stop. The message Accepted! will be displayed if the change is within pre-defined variable limits. If the user decides not to modify the value after it has already been partially changed, pressing the ESC key aborts the modification and returns the entry to its original stored value.

In a menu item which is a multiple variable sequence type, once the ENTER key is pressed there may be several prompts and sequences that are run to complete the modification. The ESC key can always be used to abort the sequence without changing any stored variables.
Notes:
(1) If Relay A,B,C,D,E,F is set to FAIL mode, relay settings are not displayed in menu.
(2) The annunciator for Relay C is shown in the MEASURE/temperature display.
1 PID is enabled
2 Optional third 4-20 output installed
3 Optional 3-relay card installed (D,E,F) not displayed if cleaner is enabled
4 If Relay A is set to ALARM mode, the settings are divided into 2 groups of HI and LO points.
5 If Comm Mode is set to a selection other than none, additional Comm menus will show.
6 Future Cleaner Function

Figure 14 - Software Map
4.22 Measure Menu [MEASURE]

The default menu for the system is the display-only menu MEASURE. This menu is a display-only measurement menu, and has no changeable list items. When left alone, the instrument will automatically return to this menu after approximately 30 minutes. While in the default menu, the UP arrow allows the user to scroll through the secondary variables on the lower line of the display. A brief description of the fields in the basic transmitter version is as follows:

TRANSMITTER MEAS SCREENS:

25.7°
Temperature display. Can be displayed in °C or °F, depending on user selection. A small "m" on the left side of the screen indicates the transmitter has automatically jumped to a manual 25°C setting due to a failure with the temperature signal input.

% Signal
Indicates the general condition of the sensor optics. The nominal value is 100% but the value will decrease if fouling of the sensor occurs. The value will rise if the flowcell is no longer full of water.

Slope = 100%
Sensor output response vs. ideal calibration. This value updates after each calibration. High or low slope can generally indicate problems with the sensor or problems with the standard being used for calibration.

Zero Offset
Sensor zero signal at 0.000 NTU as compared to factory default electronic zero. This value updates after a zero-calibration has been performed.

% Ext Light
Indicates the background ambient light level detected by the sensor. This value is not meaningful when the sensor is inside the flowcell, but is useful when submersible turbidity sensors are used in open channels. Extremely high ambient light levels will trigger an alarm.

100% 20.00 mA
PID Status screen (if enabled.) Shows the present controller output level on left, and actual transmitter current on the right. The controller can be placed in manual while viewing this screen by pressing and holding the ENTER key for 5 seconds until a small flashing "m" appears on the screen. At that point the controller output can be adjusted up or down using the UP and LEFT arrow keys. To return to automatic operation, press and hold the ENTER key for 5 seconds and the "M" will disappear.

#1 4.00 mA
Analyzer output current # 1 (normally NTU)

#2 12.00 mA
Analyzer output current # 2 (normally Temperature)

I/F v1.01
Transmitter software version number.

Tcyc 24.0 hr
Automatic sensor cleaning frequency (displayed only when enabled in CONFIG Menu).

Note: A display test (all segments ON) can be actuated by pressing and holding the ENTER key while viewing the model/version number on the lower line of the display.

The MEASURE screens are intended to be used as a very quick means of looking up critical values during operation or troubleshooting.
4.23 Calibration Menu [CAL]

The calibration menu contains items for frequent calibration of user parameters. There are five items in this list: Cal Span, Cal Temp, Cal Zero, Cal Signal, and Set Range.

Cal Span
Provides adjustment of the turbidity value to match the standard being used for calibration. A 20 NTU standard is recommended. See Part 6 - Calibration for more details.

Cal Temp
The temperature calibration function allows the user to adjust the offset of the temperature response by a small factor of ± 5°C.

Cal Zero
Provides adjustment of the turbidity value to 0 NTU when filtered sample is running through the flowcell. Sample must be filtered to less than 0.2 micron for adjustment of zero. See Part 6 - Calibration for more details.

Cal Signal
Provides adjustment of the “signal strength” indicator to 100% after cleaning of sensor. See Part 6 - Calibration for more details.

Set Range
Provides selection of the operating range. Ranges of 0-2.000, 0-20.00, 0-200.0, or 0-2000 NTU can be selected. **Note that the display range of 0-2000 can be selected but the measurements from the sensor are only valid up to 400 NTU. The analog output range should not be set above 0-400 NTU.** The default range is 0-20.00.

^L-Sig Filtr
Large Signal Filter. Range of entry is 5-200 seconds, default is 40 seconds. One stage of two stage filter in the sensor. This is the filter time constant that applies to large span input deviations, for example, a 90% step change from 1.00 to 3.00 NTU.

^S-Sig Filtr
Small signal Filter. Range of entry is 5-200 seconds, default is 120 seconds. One stage of two stage filter in the sensor. This is the filter time constant that applies to small span input deviations, for example, movement of +/- 0.1 NTU around a reading of 1.00 NTU.

4.24 Configuration Menu [CONFIG]

The Configuration Menu contains all of the general user settings:

Entry Lock
This function allows the user to lock out unauthorized tampering with instrument settings. All settings may be viewed while the instrument is locked, but they cannot be modified. The Entry Lock feature is a toggle-type setting; that is, entering the correct code will lock the transmitter and entering the correct code again will unlock it. The code is preset at a fixed value. Press ENTER to initiate user entry mode and the first digit will flash. Use arrow keys to modify value. **See Spare Parts List at the end of this manual for the lock/unlock code.** Press ENTER to toggle lock setting once code is correct. Incorrect codes do not change state of lock condition.

Contrast
This function sets the contrast level for the display. The custom display is designed with a wide temperature range and contains an LED back light so that the display is can be seen in the dark.
Press ENTER to initiate user entry mode, and the value will flash. Use arrow keys to modify the value; range is 0 to 8 (0 being lightest). Press ENTER to update and store the new value.

Timer Funcs

Enables the Autocleaner Logic on Relays D, E, and F. When enabled, these auxiliary relays control the remote autocleaner enclosure. The autocleaner enclosure provides automatic sensor cleaning using a highly effective air-blast system that is self contained in the A/C enclosure. When enabled, the D, E and F relay settings are not displayed in the CONFIG or CNTRL menus.

Com Mode

Sets digital communication mode of analyzer. Optional digital communication card must be plugged into the power supply slot for this function to work. Press ENTER to initiate user entry mode, and the entire value will flash. Use the UP arrow key to modify the desired value; selections include 1-None, 2- P-DP for Profibus DP, 3 – Modbus, 4 – Ethernet IP. Press ENTER to store the new value.

Com Address

Sets bus address for digital communication mode of analyzer. Optional digital communication card must be plugged into the power supply slot for this function to work.

Press ENTER to initiate user entry mode, and the entire value will flash. Use the UP arrow key to modify the desired value. Range is 1-125. Press ENTER to store the new value.

Iout#1 Mode

This function sets analog output #1 to either track NTU turbidity or enables the PID controller to operate on the turbidity input. Press ENTER to initiate user entry mode, and the entire value will flash. Use the UP arrow key to modify the desired value; selections include 1- NTU turbidity or 2-PID for PID control. Press ENTER to store the new value.

Iout#2 Mode

This function sets analog output #2 for either temperature (default), NTU turbidity, or for Aux Units (mg/l or PSL). Press ENTER to initiate user entry mode, and the entire value will flash. Use the UP arrow key to modify the desired value; selections include 1-C/F for temperature, or 2-ppm NTU or r 3-mg/l or PSL. Press ENTER to store the new value.

Rly A Mode

Relay A can be used in three different ways: as a setpoint control, as a fail alarm, or as a HI-LO alarm band. The three settings for Rly A Mode are CON, FAIL and AL.

The CON setting enables normal control operation for Relay A, with settings for setpoint, hysteresis, delay and phasing appearing in the CONTROL menu automatically. See Figure 19 – Control Relay Example for further details.

The AL setting allows two setpoints to be selected for the same relay, producing a HI-LO alarm band. In this mode, Relay A will trip inside or outside of the band, depending upon the Phase selected. See Figure 20 – Alarm Relay Example for further details.

The FAIL setting enables the fail alarm mode for Relay A. Relay A will then trip on any condition that causes the FAIL icon to be displayed on the
LCD. Using this mode allows the User to send alarm indications to other remote devices.

Relay B Mode
Relay B can be used in two ways: as a setpoint control or as a fail alarm. The settings for Relay B Mode are **CON, FAIL** and they are the same as those modes in relay A.

Relay C Mode
This function sets the display units for temperature measurement. Press ENTER to initiate user entry mode, and the entire value will flash. Use the UP arrow key to modify the desired display value. The choices are °F and °C. Press ENTER to store the new value.

4.25 Control Menu [CONTROL]

The Control Menu contains all of the output control user settings. Note that PID menu items will not appear unless output 1 is configured for PID mode in the CONFIG menu.

Set PID 0%
If the PID is enabled, this function sets the minimum and maximum controller end points. Unlike the standard 4-20 mA output, the controller does not “scale” output values across the endpoints. Rather, the endpoints determine where the controller would normally force minimum or maximum output in an attempt to recover the setpoint (even though the controller can achieve 0% or 100% anywhere within the range.)

If the 0% point is lower than the 100% point, then the controller action will be “reverse” acting. That is, the output of the controller will increase if the measured value is less than the setpoint, and the output will decrease if the measured value is larger than the setpoint. Flipping the stored values in these points will reverse the action of the controller to “direct” mode.

The entry value is limited to a value within the range specified in “Set Range”, and the 0% and the 100% point must be separated by at least 1% of this range. Use the LEFT arrow key to select the first digit to be modified. Then use the UP and LEFT arrow keys to select the desired numerical value. Press ENTER to store the new value.

PID Setptn
The measured value which the controller is attempting to maintain by adjusting output value. It is the nature of the PID controller that it never actually gets to the exact value and stops. The controller is continually making smaller and smaller adjustments as the measured value gets near the setpoint.

PID Prop
Proportional gain factor. The proportional gain value is a multiplier on the controller error (difference between measured value and setpoint value.) Increasing this value will make the controller more responsive.

PID Int
Integral is the number of “repeats-per-minute” of the action of the controller. It is the number of times per minute that the controller acts on the input error. At a setting of 2.0 rpm, there are two repeats every minute. If the integral is set to zero, a fixed offset value is added to the controller (manual reset.) Increasing this value will make the controller more responsive.
PID Deriv
[lout1=PID]
Derivative is a second order implementation of Integral, used to suppress “second-order” effects from process variables. These variables may include items like pumps or mixers that may have minor impacts on the measured value. The derivative factor is rarely used in water treatment process, and therefore, it is best in most cases to leave it at the default value. Increasing this value will make the controller more responsive.

Set 4 mA
Set 20 mA
[lout1=NTU]
These functions set the main 4 and 20 mA current loop output points for the transmitter. The units displayed depend on the selection made in the CONFIG menu for Iout #1 Mode. Do not set the 20 mA setting above 400 NTU.

The value stored for the 4 mA point may be higher or lower than the value stored for the 20 mA point. The entry values are limited to values within the range specified in “Set Range”, and the 4 mA and the 20 mA point must be separated by at least 1% of this range. Use the LEFT arrow key to select the first digit to be modified. Then use the UP and LEFT arrow keys to select the desired numerical value. Press ENTER to store the new value.

*Set 4 mA #2
*Set 20 mA #2
[temp/D.O.]
These functions set the second 4 mA and 20 mA current loop output points for the transmitter. The output may be set to track temperature (default), NTU, or the selected Aux Units of mg/l or PSL. The values stored for the 4 mA point may be higher or lower than the value stored for the 20 mA point.

The entry value is limited to a value between 0 and 55 °C if it is set for temperature, within the range specified in “Set Range” if the output is set to track NTU. The 4 mA and the 20 mA point must be at least 20 units away from each other. Press ENTER to initiate user entry mode, and the value will flash. Use arrow keys to modify value. Press ENTER to store the new value.

*A Setpoint
This function establishes the trip point for relay A. The entry value is limited to a value within the range specified in “Set Range”. Use the LEFT arrow key to select the first digit to be modified. Then use the UP and LEFT arrow keys to select the desired numerical value. Press ENTER to store the new value.

*A Hysteresis
This function establishes the hysteresis, or “deadband”, for Relay A. Hysteresis is most often used to control relay chattering; however, it may also be used in control schemes to separate the ON/OFF trip points of the relay. Press ENTER to initiate user entry mode, and the value will flash. Use the arrow keys to modify value. Press ENTER to store the new value.

*A Delay
This function places an additional amount of time delay on the trip point for relay A. This delay is in addition to the main delay setting for the controller. The entry value is limited to a value between 0 and 999 seconds. Press ENTER to initiate user entry mode, and the value will flash. Use arrow keys to modify value; range is 0 to 999 seconds. Press ENTER to store the new value.
A Phasing

This function establishes the direction of the relay trip. When phase is HI, the relay operates in a direct mode. Therefore, the relay energizes and the LCD indicator illuminates when the turbidity value exceeds the setpoint. When the phase is LO, the relay energizes and the LCD indicator illuminates when the turbidity drops below the setpoint. The failsafe setting does have an impact on this logic. The description here assumes the failsafe setting is OFF. Press ENTER to initiate user entry mode, and the entire value will flash. Use the UP arrow key to modify the desired value; selections include HI for direct operation or LO for reverse operation. Press ENTER to store the new value.

See Figure 16 below for a visual description of a typical control relay application.

![Control Relay Diagram](image)

When value rises to ≥ 1.000 ppm, relay closes.

When value falls to ≤ 0.950 ppm, relay opens.

Settings:
- Setpoint: 1.000 ppm
- Hyst: 0.050
- Delay: 000
- Failsafe: OFF

Figure 16 - Control Relay Examples

If Relay A Mode is set to Alarm Mode, AL, then the following settings will appear in the Config Menu list automatically. In this mode, two setpoints can be selected on the same relay, to create an alarm band. Phase HI selection causes the relay to energize outside of the band, and Phase LO causes the relay to energize inside of the band. This feature enables one relay to be used as a control relay while the other is used as a HI-LO Alarm relay at the same time. Setpoint A-LO must be set lower than Setpoint A-HI. When AL mode is first selected, Setpoint A-LO is defaulted to 0.

When value rises to ≥ 1.000 ppm, relay opens.

When value falls to ≤ 1.000 ppm, relay closes.

When value rises to ≥ 0.500, relay closes.

When value falls to ≤ 0.450 ppm, relay opens.

O&M Manual
Rev-J (7/19)
Figure 15 - Alarm Relay Examples

B Setpoint
B Hysteresis
B Delay
B Phasing

If Relay B Mode is set to **CON**, then Relay B will function identically to Relay A. Relay B settings appear in the CONFIG menu list automatically.

C Setpoint
C Hysteresis
C Delay
C Phasing

If Relay C Mode is set to **CON** (see **Relay C Mode**), then Relay C will function identically to Relay A. Relay C settings appear in the CONFIG menu list automatically.

Timer CYCLE
Timer CLEAN
Timer HOLD

When Timer Funcs is set to **ON** in the Config Menu, three additional menu items appear in the Control Menu. These are Timer Cycle, Timer Clean, and Timer Hold.

The timer **CYCLE** setting controls the frequency of the cleaning function. The frequency should not be set to more than once every 3 hours and can be adjusted up to 999 hours. A good starting frequency is 24 hours.

The timer **CLEAN** setting allows adjustment of the number of cleaning pulses that occur during each cycle. The default is 3 pulses, which requires about 2 minutes to complete. This value should not be increased to more than 6 pulses.

The timer **HOLD** setting controls the amount of time the analog output is held at the end of the cleaning cycle. This hold time allows the outputs to stabilize back to normal readings. The default value is 1 minute which is normally sufficient time for the measurement to stabilize after cleaning.

To change the values for Timer **CYCLE**, **CLEAN**, and **HOLD**, press ENTER to initiate user entry mode, and entire value will flash. Use the UP arrow key to modify the desired value. Selections for each variable are: CLEAN 1-10 minutes, CYCLE 1-999 hours, HOLD 0-999 minutes. Press ENTER to store the new value.
Example: If the timer-CYCLE setting is 24 hours, the timer CLEAN setting is 3 pulses, and the timer-HOLD setting is 1 minute, the following sequence will occur: At the instant the timer is enabled, the time period begins. Once the 24-hour CYCLE period ends, the outputs will be put in hold and relay D and relay E will cycle to run the compressor in the Q-Blast module and to energize the solenoid for delivery of the air pulses. After the completion of 3 air-blast pulses, the cycle will end. The hold will stay locked in for an additional 1 minute (HOLD time), retaining the original output signals. Once the minute expires, the outputs will be released back to the normal monitoring state. Then, the entire cycle will repeat – approximately once per day.

Note: The sensor cleaning timer is not based on a “real-time” clock circuit. Therefore, the time accuracy is only within about 10 minutes per day.

Note: A cleaning cycle can be manually started by pressing and holding the ENTER key for a few seconds while viewing the timer status screen in the MEAS menu. The timer must be in the “Tcyc” state to allow a manual start. After this forced cycle, the system will return to normal.

4.26 Diagnostics Menu [DIAG]

The diagnostics menu contains all of the user settings that are specific to the system diagnostic functions, as well as functions that aid in troubleshooting application problems.

Set Hold

The Set Hold function locks the current loop output values on the present process value and holds relays in current status. This function can be used prior to calibration, or when removing the sensor from the process, to hold the output in a known state. Once HOLD is released, the outputs return to their normal state of following the process input. The transfer out of HOLD is bumpless on the both analog outputs - that is, the transfer occurs in a smooth manner rather than as an abrupt change. An icon on the display indicates the HOLD state, and the HOLD state is retained even if power is cycled. Press ENTER to initiate user entry mode, and entire value will flash. Use the UP arrow key to modify the desired value, selections are ON for engaging the HOLD function, and OFF to disengage the function. Press ENTER to store the new value.

The Set Hold function can also hold at an output value specified by the user. To customize the hold value, first turn the HOLD function on. Press the ESC key to go to the DIAG Menu and scroll to Sim Output using the UP arrow key. Press ENTER. Follow the instructions under Sim Output (see following page).

Fault List

The Fault List screen is a read-only screen that allows the user to display the cause of the highest priority failure. The screen indicates the number of faults present in the system and a message detailing the highest priority fault present. Note that some faults can result in multiple displayed failures due to the high number of internal tests occurring. As faults are corrected, they are immediately cleared.
Faults are not stored; therefore, they are immediately removed if power is cycled. If the problem causing the faults still exists, however, faults will be displayed again after power is re-applied and a period of time elapses during which the diagnostic system re-detects them. The exception to this rule is the calibration failure. When a calibration fails, no corrupt data is stored. Therefore, the system continues to function normally on the data that was present before the calibration was attempted.

After 30 minutes or if power to the transmitter is cycled, the failure for calibration will be cleared until calibration is attempted again. If the problem still exists, the calibration failure will re-occur. Press ENTER to initiate view of the highest priority failure. The display will automatically return to normal after a few seconds.

PID Timer

This function sets a timer to monitor the amount of time the PID controller remains at 0% or 100%. This function only appears if the PID controller is enabled. If the timer is set to 0000, the feature is effectively disabled. If the timer value is set to any number other zero, a FAIL condition will occur if the PID controller remains at 0% or 100% for the timer value. If one of the relays is set to FAIL mode, this failure condition can be signaled by a changing relay contact.

Press ENTER to initiate user entry mode, and the entire value will flash. Use the UP arrow key to modify desired value; range of value is 0-9999 seconds. Press ENTER to store the new value.

Sim Out

The Sim Out function allows the user to simulate the turbidity level of the instrument in the user selected display range. The user enters a ppm value directly onto the screen, and the output responds as if it were actually receiving the signal from the sensor. This allows the user to check the function of attached monitoring equipment during set-up or troubleshooting. Escaping this screen returns the unit to normal operation. Press ENTER to initiate the user entry mode, and the right-most digit of the value will flash. Use arrow keys to modify desired value.

The starting display value will be the last read value of the input. The output will be under control of the SIM screen until the ESC key is pressed.

Note: If the HOLD function is engaged before the Sim Output function is engaged, the simulated output will remain the same even when the ESC key is pressed. Disengage the HOLD function to return to normal output.

Fail Out #1

This function enables the user to define a specified value that the main current output will go to under fault conditions. When the Relay Option Board is installed, the display will read Fail Out #1. When enabled to ON, the output may be forced to the current value set in Fail Val (next item.) With the Fail Out setting of ON, and a Fail Val setting of 6.5 mA, any alarm condition will cause the current loop output to drop outside the normal operating range to exactly 6.5 mA, indicating a system failure that requires attention.

Press ENTER to initiate user entry mode, and the entire value will flash. Use the UP arrow key to modify desired value; selections are ON, OFF. Press ENTER to store the new value.
Fail Val #1

Sets the output failure value for Iout#1. When **Fail Out** above is set to **ON**, this function sets value of the current loop under a FAIL condition. When the Relay Option Board is installed, the display will read **Fail Out #1**. The output may be forced to any current value between 4-20 mA.

Press ENTER to initiate user entry mode, and the entire value will flash. Use the UP arrow key to modify desired value; selections are between **4mA**, and **20mA**. Press ENTER to store the new value.

Fail Out #2

This function sets the fail-mode of current loop output #2 under a FAIL condition. The settings and operation are identical to Fail Out for output #1.

Fail Val #2

This function sets the value of current loop output #2 under a FAIL condition. The settings and operation are identical to Fail Out for output #1.

Backlight

This function has three options. **ON** – On all the time, **OFF** – Off all the time, **AL** – Alarm (Default). This function flashes the backlight on and off whenever the Fail icon is displayed.

Start Delay

This function is designed to minimize control or alarm issues arising from temporary power loss. When power goes down, the monitor records the analog output values and the status of relays and PID functions. When power is restored, the analog values and relays will be held at the pre-power loss values for a defined period of time. This "start delay" may be programmed for periods from 0-9.9 minutes. This function is set to 0.0 minutes by default and must be activated by the user if desired by setting a positive time value.

Cal Check

This feature can be enabled to run at the completion of every autoclean cycle to check sensor operation. When enabled, this feature uses the autocleaner enclosure to blast air past the sensor face, while submerged, for a fixed amount of time. During that time, the sensor saturation reading is checked to see if it is within certain limits (75%-125%). If the reading comes back within range, the autoclean cycle completes as normal. If the reading is out of range, a FAIL diagnostic flag will be tripped and the FAIL relay (if set) can be used to indicate a failure. NOTE – This feature may not work under all circumstances, and must be evaluated for your specific application. Very high flow fluid rates may displace the forced air stream, and a good saturation reading may be difficult to obtain.

Failsafe

This function allows the user to set the optional system relays to a failsafe condition. In a failsafe condition, the relay logic is reversed so that the relay is electrically energized in a normal operating state. By doing this, the relay will not only change state when, for example, a turbidity limit is exceeded, but also when power is lost to the controller.

When failsafe is selected **ON**, the normally-open contacts of the relay will be closed during normal operation. In an attempt to make this configuration less confusing, the LCD icon logic is reversed with this setting, and the icon is **OFF** under this normal condition. Therefore, when the trip condition occurs, the closed N.O. contacts will be opened (relay
de-energized), and the LCD icon will illuminate. In addition, a power fail would also cause the same contacts to open.

Foul Alarm
Activates or disables the fouled sensor detector. This circuit detects the buildup of solids on the sensor that can degrade the turbidity measurement. The options are **ON**–alarm is active, or **OFF**–alarm is disabled. The default is ON.

Dry Alarm
Similar to the fouling alarm, this alarm is generated when the sensor is no longer in liquid. Loss of sample flow can cause this alarm to activate if the flowcell is drained of sample. The options are **ON**–alarm is active, or **OFF**–alarm is disabled. The default is ON.

Light Alarm
The sensor can provide an alarm in the event that ambient light is high enough to cause measurement problems. This alarm is not useful for flowcell applications but can be of value if a submersible sensor is in use. The options are **ON**–alarm is active, or **OFF**–alarm is disabled. The default is OFF.

Set Default
The Set Default function allows the user to return the instrument back to factory default data for all user settings or for just the calibration default. It is intended to be used as a last resort troubleshooting procedure. All user settings or the calibration settings are returned to the original factory values. Hidden factory calibration data remains unchanged. Press ENTER to initiate user entry mode and select either **CAL** or **ALL** with the UP arrow key. The default CAL routine will reset the zero offset to 0.0 nA and reset the slope to 100%. The default ALL routine will reset all program variables to factory default and should be used with care since it will change any user settings that were programmed in the field.
Part 5 – Calibration

5.1 Turbidity Calibration

Turbidity monitors will start to measure aqueous samples as soon as power is applied and the sensor is submerged in a tank, channel, or sample chamber. Calibration of a turbidity system is normally required at start-up, but factory settings are likely to be fairly accurate, so it is often OK to start up the monitor without adjustment. Calibration may require adjustment of both the zero and span of the instrument, but the factory zero setting is very stable and we suggest that only the span be adjusted at startup.

As mentioned above, the turbidity sensor zero has been adjusted at the factory and user adjustment is normally not required. It is possible to adjust the zero of the Q46/76 by submerging the sensor in a container of water that has been filtered with a filter pore size of 0.2 micron or smaller. Sample must be run through the filter for at least 30 minutes to be sure that all particles from the normal sample are diluted out of the flowcell. The procedure below will allow the adjustment of the system to zero on the filtered sample if desired.

5.11 Cal Zero

Prior to attempting a zero calibration, it is best to remove the sensor and wipe the optical surfaces with a soft cloth to remove any buildup that could affect sensor performance. Once the sensor is clean, place it in an opaque container filled with filtered zero turbidity water. Proceed as follows.

1. Allow the sensor to stabilize for about 1-2 minutes in the zero solution. Press the Menu key to access the Cal Menu. Press the UP key until to access “Cal Zero”.

2. Press the Enter key and the bottom line will display a message asking that the sensor be placed in zero sample. Press Enter again and the display will flash a “Wait” message.

3. After a short period, the monitor will zero the sensor and flash an “accepted” message indicating that the zero was successful. If the zero offset is too high, a “Cal Fail” message will appear and the “Fail” icon on the display will light up.

4. Once the zero adjustment is complete, the sensor can be submerged in a container of standard turbidity solution for calibration, or placed back into the normal sample if a comparison calibration is to be done.

5.12 Cal Span

Calibration of a Q46/76 turbidity monitor requires the use of a Formazin turbidity standard. A value of 40 NTU is recommended as it is high enough that it minimizes small dilution errors. Alternatively, the instrument may be calibrated to a value determined using a high quality portable turbidimeter. This is sometimes easier than using turbidity standards.

Formazin turbidity standards can be prepared using reagent solutions available from Fisher Scientific or other lab supply companies. The chemicals required are Turbidity Standard 1 (Formazin Sulfate, 1%, Fisher part #LC26300-7) and Turbidity Standard 2 (Hexamethylenetetramine, 10%, Fisher part # LC26320-7). Stabilized turbidity standards available commercially may also be used for this purpose.
Mixing a turbidity standard takes 24 hours. First, place 5 cc. of Turbidity Standard 1 and 5 cc. of Turbidity Standard 2 in a 100 cc volumetric flask. Allow to stand for 24 hours at about 25°C. Then dilute to 100 cc. with distilled water. This will provide a stock solution with a turbidity value of 400 NTU. This solution should be discarded after about 15 days.

To set the span of the turbidity monitor, dilute the 400 NTU stock solution by 10:1 to give you a 40 NTU standard. Once your standard is prepared, follow the procedure below.

NOTE: If you are adjusting the instrument to a value determined with a portable turbidity meter, go directly to step 3.

1. Prior to calibration, the monitor should be placed in the 0-200 NTU range. To do this, press the menu key to access the Cal Menu. Press the UP arrow until the Set Range display is shown. Press Enter and the display will flash. Press the UP key until the 0-200.0 range is shown and then press Enter.

2. Place the 100 cc volume of 400 NTU stock solution into a 1 liter beaker and dilute to 1 litre with distilled water. Pour this 40 NTU standard into an opaque container large enough to submerge the turbidity sensor. Stir the solution gently with the sensor and then allow the sensor to sit undisturbed for 1 minute.

3. Press the Menu key to access the Cal Menu. Press the UP arrow to access “Cal Span”.

4. Press the Enter key and you will be prompted to place the sensor into a known turbidity solution. Press Enter again and the display will flash “Wait” while checking for the stability of the signal. After a few seconds, the display will flash, allowing adjustment of the value. Use the Up and Left keys to adjust each digit of the display to the value of your calibration solution (normally 20.00).

5. After the proper value is entered, press the Enter key and the display will flash “accepted”. Should the sensor determine that the entered value is outside its normal offset limits, a “Cal Fail” message will flash. Should this occur, a check of the calibration solution is required. Also check the sensor optical surface and wipe with a clean cloth before attempting another span adjustment.

NOTE: The monitor calculates a slope % during the update. If the value you enter results in a slope of less than 80% or more than 120%, an error message will indicate this condition.

5.2 Temperature Calibration

Temperature calibration is almost never required. However, provision is made for temperature calibration if desired. The sequence is essentially a 1-point offset calibration that allows adjustments of approximately ± 5°C.

The sensor temperature may be calibrated on line, or the sensor can be removed from the process and placed into a known solution temperature reference. In any case, it is critical that the sensor be allowed to reach temperature equilibrium with the solution in order to provide the highest accuracy. When moving the sensor between widely different temperature conditions, it may be necessary to allow the sensor to stabilize as much as one hour before the calibration sequence is initiated. If the sensor is on-line, the user may want to set the output HOLD feature prior to calibration to lock out any output fluctuations.
1. Scroll to the CAL menu section using the MENU key and press ENTER or the UP arrow key.

2. Press the UP arrow key until Cal Temp is displayed.

3. Press the ENTER key. The message Place sensor in solution then press ENTER will be displayed. Move the sensor into the calibration reference (if it hasn't been moved already) and wait for temperature equilibrium to be achieved. Press ENTER to begin the calibration sequence.

4. The calibration data gathering process will begin. The message Wait will flash as data is accumulated and analyzed. The °C or °F symbol may flash periodically if the reading is too unstable.

5. The message Adjust value - press ENTER will be displayed, and the right-most digit will begin to flash, indicating that the value can be modified. Using the UP and LEFT arrow keys, modify the value to the known ref solution temperature. Adjustments up to ± 5 °C from the factory calibrated temperature are allowed. Press ENTER.

Once completed, the display will indicate PASS or FAIL. If the unit fails, the temperature adjustment may be out of range, the sensor may not have achieved complete temperature equilibrium, or there may be a problem with the temperature element. In the event of calibration failure, it is recommended to attempt the calibration again immediately.
6.1 General

The cleaner control system located in the cleaner enclosure contains a number of components designed to supply pulses of high pressure air to the tip of the sensor. The main components and their function are as follows:

Compressor: The air compressor is a small DC powered diaphragm type compressor that delivers air at up to 30 PSI to the accumulator cylinder which is part of the system. The compressor cannot provide an output above 30 PSI (2 Bar) so no special pressure relief is required in the system.

Accumulator: The accumulator is a 3 1/2" diameter stainless steel chamber that is pressurized with air from the compressor. The accumulator allows a relatively high volume of air to be delivered with each cleaning pulse, increasing the effectiveness of the cleaner.

Solenoid Valve: The solenoid valve on the outlet of the accumulator controls the flow of cleaning pulses to the nozzle located on the sensor assembly. The solenoid is opened and closed under the control of the sequencing module.

The operation of the cleaner control system is completely automatic. There are no customer adjustments required. The only requirement is that the pH analyzer be set for AUTO mode of operation and that the desired cleaning frequency be programmed.

6.2 Cleaner Sequence

The cleaner control system is designed to provide three 3-second pulses of pressurized air through a nozzle located within 1 inch of the sensor face. The nozzle directs the air blast at the center of the sensor, effectively blasting away accumulated coatings on the surface.

The cleaner sequence begins with the closure of relay D in the display module. The sequencing system contains a relay that turns on the compressor and releases air to the cleaner nozzle when the accumulator has been charged. The entire cycle takes about 90 seconds.

During the cycle, the compressor will run for 40 seconds to charge the accumulator. At this point, the sequencing system will open the solenoid valve for 3 seconds, discharging air through the solenoid valve and out to the cleaner nozzle at the sensor. This delivers a 3 second high velocity air blast across the face of the sensor. After 3 seconds, the solenoid will close, allowing the accumulator to recharge for 20 seconds. This cycle repeats itself three times, after which the compressor shuts off. The solenoid will release the final air burst shortly after the compressor shuts off so that no pressure remains in the accumulator.

Once the air cleaning system has run through a cycle, it will remain in standby while waiting for the next activation signal from the PH monitor. This will normally occur every 24 hours, but can be activated manually at any time as explained previously.
The cleaner can be started **manually** any time the monitor is in operation. From the Measure Menu, press the UP arrow until the bottom line of the display indicates “Tcycle xx Hrs”. Then press and hold the ENTER key for about 3 seconds to start the cleaning cycle. You will hear the compressor activate.

6.3 Cleaner Programming

As mentioned in the Configuration section of the manual, the cleaning system is ready to run once all the installation wiring is complete and power is applied to the Q46 and the Q-Blast cleaner. The monitor will already be programmed to activate the cleaner every 6 hours, which is the default value. However, most applications require cleaning no more than every 24 hours. The frequency of cleaning is controlled by the “Timer Cycle” routine in the Control Menu.

If the cleaner system is turned off by setting the Timer Funcs to OFF in the Configuration menu, the Timer Cycle setting will return to the factory default frequency of 6 hours when the Timer Funcs is turned on again. You may need to reset your preferred cleaning frequency.
7.1 PID Description

PID control, like many other control schemes, is used in chemical control to improve the efficiency of chemical addition or control. By properly tuning the control loop that controls chemical addition, only the amount of chemical that is truly required is added to the system, saving money. The savings can be substantial when compared to a system which may be simply adding chemical at a constant rate to maintain some minimal addition under even the worst case conditions. The PID output controller is highly advantageous over simple control schemes that just utilize direct (proportional only) 4-20 mA output connections for control, since the PID controller can automatically adjust the “rate” of recovery based on the error between the setpoint and the measured value – which can be a substantial efficiency improvement..

The PID controller is basically designed to provide a “servo” action on the 4-20 mA output to control a process. If the user requires that a measured process stay as close as possible to a specific setpoint value, the controller output will change from 0% to 100% in an effort to keep the process at the setpoint. To affect this control, the controller must be used with properly selected control elements (valves, proper chemicals, etc.) that enable the controller to add or subtract chemical rapidly enough. This is not only specific to pumps and valves, but also to line sizes, delays in the system, etc.

This section is included to give a brief description of tuning details for the PID controller, and is not intended to be an exhaustive analysis of the complexities of PID loop tuning. Numerous sources are available for specialized methods of tuning that are appropriate for a specific application.

7.2 PID Algorithm

As most users of PID controllers realize, the terminology for the actual algorithm terms and even the algorithms themselves can vary between different manufacturers. This is important to recognize as early as possible, since just plugging in similar values from one controller into another can result in dramatically different results. There are various basic forms of PID algorithms that are commonly seen, and the implementation here is the most common version; The ISA algorithm (commonly referred to as the “ideal” algorithm.)

\[
\text{output} = P \left[e(t) + \frac{1}{I} \int e(t) dt + D \frac{de(t)}{dt} \right]
\]

Where:
- output = controller output
- \(P \) = proportional gain
- \(I \) = integral gain
- \(D \) = derivative gain
- \(t \) = time
- \(e(t) \) = controller error (\(e = \)measured variable – setpoint)

Figure 16 - ISA PID Equation
The most notable feature of the algorithm is the fact the proportional gain term affects all components directly (unlike some other algorithms - like the "series" form.) If a pre-existing controller utilizes the same form of the algorithm shown above, it is likely similar settings can be made if the units on the settings are exactly the same. Be careful of this, as many times the units are the reciprocals of each other (i.e. reps-per-min, sec-per-rep.)

PID stands for "proportional, integral, derivative." These terms describe the three elements of the complete controller action, and each contributes a specific reaction in the control process. The PID controller is designed to be primarily used in a "closed-loop" control scheme, where the output of the controller directly affects the input through some control device, such as a pump, valve, etc.

Although the three components of the PID are described in the setting area (section 6.25), here are more general descriptions of what each of the PID elements contribute to the overall action of the controller.

P Proportional gain. With no "I" or "D" contribution, the controller output is simply a factor of the proportional gain multiplied by the input error (difference between the measured input and the controller setpoint.) Because a typical chemical control loop cannot react instantaneously to a correction signal, proportional gain is typically not efficient by itself – it must be combined with some integral action to be useful. Set the P term to a number between 2-4 to start. Higher numbers will cause the controller action to be quicker.

I Integral gain. Integral gain is what allows the controller to eventually drive the input error to zero – providing accuracy to the control loop. It must be used to affect the accuracy in the servo action of the controller. Like proportional gain, increasing integral gain results in the control action happening quicker. Set the I term to a number between 3-5 to start (1-2 more than P). Like proportional gain, increasing the integral term will cause the controller action to be quicker.

D Derivative gain. The addition of derivative control can be problematic in many applications, because it greatly contributes to oscillatory behavior. In inherently slow chemical control processes, differential control is generally added in very small amounts to suppress erratic actions in the process that are non-continuous, such as pumps and valves clicking on and off. However, as a starting point for chemical process control, its best to leave the "D" term set to 0.

Based on these descriptions, the focus on tuning for chemical applications really only involves adjustment of "P" and "I" in most cases. However, increasing both increases the response of the controller. The difference is in the time of recovery. Although combinations of high "P"s and low "I" will appear to operate the same as combinations of low "P"s and high "I"s", there will be a difference in rate of recovery and stability. Because of the way the algorithm is structured, large "P"s can have a larger impact to instability, because the proportional gain term impacts all the other terms directly. Therefore, keep proportional gain lower to start and increase integral gain to achieve the effect required.

Many of the classical tuning techniques have the user start with all values at 0, and then increase the P term until oscillations occur. The P value is then reduced to ½ of the oscillatory value, and the I term is increased to give the desired response. This can be done with the Q46D controller, with the exception that the I term should start no lower than 1.0.

If it appears that even large amounts of integral gain (>20) don't appreciably increase the desired response, drop I back to about 1.0, and increase P by 1.00, and start increasing I again. In most chemical control schemes, I will be approximately 3 times the value of P.
7.3 **Classical PID Tuning**

Unlike many high speed position applications where PID loops are commonly used, the chemical feed application employed by this instrument does not require intense mathematical exercise to determine tuning parameters for the PID. In fact, the risk of instability is far greater with overly tuned PID control schemes. In addition, many of the classical mathematical exercises can be damaging or wasteful in the use of chemicals when the process is bumped with large amounts of input error to seek a response curve. Because of this, the general adjustment guidelines described in section 8.2 are sufficient for almost all application tuning for this instrument. Beyond this, many sources are available for classical tuning methods.

7.4 **Manual PID Override Control**

The Q46 electronics is equipped designed to allow the user to take manual control of the PID output. This is often useful when starting up a control loop, or in the event that you wish to bump the system manually to measure system response time.

To access the manual PID control, you must be in the MEASURE mode of operation and you must have the PID output displayed on the lower line. This line will indicate “XX.X% XX.X mA” with the X values simply indicating the current values. With this display on the screen, press and hold the ENTER key for about 5 seconds. You will see a small “m” show up between the % value and the mA value. This indicates you are now in manual mode.

Once in manual, you may increase the PID output by pressing the UP arrow or you may decrease the output by pressing the LEFT arrow. This will allow you to drive the PID output to any desired setting.

To revert to normal PID control, press and hold the ENTER key again until the “m” indicator disappears.

7.5 **Common PID Pitfalls**

The most common problem occurring in PID control applications involves the false belief that proper settings on only the PID controller can balance any process to an efficient level.

Close-loop control can only be effective if all elements in the loop are properly selected for the application, and the process behavior is properly understood. Luckily, the nature of simple chemical control process are generally slow in nature. Therefore, even a de-tuned controller (one that responds somewhat slow) can still provide substantial improvements to setpoint control. In fact, damaging oscillatory behavior is far more likely in tightly tuned controllers where the user attempted to increase response too much.

When deciding on a PID control scheme, it is important to initially review all elements of the process. Sticking valves, undersized pumps, or delays in reaction times associated with chemical addition can have a dramatic effect on the stability of the control loop. When controlling a chemical mix or reaction, the sensor should be placed in a location that ensures proper mixing or reaction time has occurred.
The easiest processes to control with closed-loop schemes are generally linear, and symmetrical, in nature. For example, controlling level in a tank where the opening of a valve for a fixed period of time corresponds linearly to the amount that flows into a tank. Chemical control processes can be more problematic when the nature of the setpoint value is non-linear relative to the input of chemical added. For example, D.O. control of a process may appear linear only in a certain range of operation, and become highly exponential at the extreme ranges of the measuring scale. In addition, if a chemical process is not symmetrical, that means it responds differentially to the addition and subtraction of chemical. It is important in these applications to study steady-state impact as well as step-change impact to process changes. In other words, once the process has apparently been tuned under normal operating conditions, the user should attempt to force a dramatic change to the input to study how the output reacts. If this is difficult to do with the actual process input (the recommended method), the user can place the control in manual at an extreme control point such as 5% or 95%, and release it in manual. The recovery should not be overly oscillatory. If so, the loop needs to be de-tuned to deal with that condition (reduce P and/or I.)
8.1 General

The Q46/76 Turbidity Monitor will generally provide unattended operation over long periods of time. With proper care, the system should continue to provide measurements indefinitely. For reliable operation, maintenance on the system must be done on a regular schedule. Keep in mind that preventive maintenance on a regular schedule is much less troublesome than emergency maintenance that always seems to come at the wrong time.

8.2 Analyzer Maintenance

No unusual maintenance of the analyzer is required if installed according to the guidelines of this operating manual. If the enclosure door is frequently opened and closed, it would be wise to periodically inspect the enclosure sealing gasket for breaks or tears.

8.3 Sensor Maintenance

Sensor maintenance is limited to simple cleaning of the optical surfaces. In general, wiping with a soft cloth is all that’s needed. The optical surfaces can also be cleaned with a household glass cleaner or a surface cleaner. Never use abrasive pads on the optical surfaces.

In some applications, the sensor might accumulate iron and manganese deposits that precipitate from the water after chlorination. Should this occur, cleaning the sensor by soaking in solution of a commercial iron remover such as “Red-B-Gone” will quickly remove deposits.

The lenses on the sensor are made of acrylic. Be careful not to scratch these surfaces when handling the sensor. Severe scratches can cause irreparable damage.
Part 9 – Troubleshooting

9.1 General

The information included in this section is intended to be used in an attempt to quickly resolve an operational problem with the system. During any troubleshooting process, it will save the most time if the operator can first determine if the problem is related to the analyzer, sensor, or some external source. Therefore, this section is organized from the approach of excluding any likely external sources, isolating the analyzer, and finally isolating the sensor. If these procedures still do not resolve the operational problems, any results the operator may have noted here will be very helpful when discussing the problem with the factory technical support group.

9.2 External Sources of Problems

To begin this process, review the connections of the system to all external connections.

1. Verify the analyzer is earth grounded. For all configurations of the analyzer, an earth ground connection MUST be present for the shielding systems in the electronics to be active. Grounded conduit provides no earth connection to the plastic enclosure, so an earth ground wiring connection must be made at the power input terminal strip. Use the special “shield terminal” stub on the power supply board for optimum sensor cable shield grounding.

2. Verify the proper power input is present. Check instrument label to verify your unit is either 100-240 VAC or 12-24 VDC.

3. Verify the loads on any 4-20 mA outputs do not exceed the limits in the Instrument Specifications. During troubleshooting, it is many times helpful to disconnect all these outputs and place wire-shorts across the terminals in the instrument to isolate the system and evaluate any problems which may be coming down the analog output connections.

4. Do not run sensor cables or analog output wiring in the same conduits as power wiring. If low voltage signal cables must come near power wiring, cross them at 90° to minimize coupling.

5. If rigid conduit has been run directly to the Q46 enclosure, check for signs that moisture has followed conduit into the enclosure.

6. Check for ground loops. Although the sensor is electrically isolated from the process water, high frequency sources of electrical noise may still cause erratic behavior in extreme conditions. If readings are very erratic after wiring has been checked, check for a possible AC ground loop by temporarily placing the sensor into a bucket of water.

7. On relay based systems, check the load that is connected to the relay contacts. Verify the load is within the contact rating of the relays. Relay contacts which have been used for higher power AC current loads may become unsuitable for very low signal DC loads later on because a small amount of pitting can form on the contacts. If the load is highly inductive (solenoids, motor starters, large aux relays), note that the contact rating will be de-rated to a lower level. Also, due to the large amount of energy present in circuits driving these types of loads when they are switched on and off, the relay wiring placement can result in electrical interference for other devices. This can be quickly resolved by moving wiring, or by adding very inexpensive snubbers (such as Quenchcords) to the load.
8. Carefully examine any junction box connections for loose wiring or bad wire stripping. If possible, connect the sensor directly to the analyzer for testing.

9. Check sensor for fouling. Look closely for signs of grease or oil which may be present. Sensor fouling can be corrected by cleaning optical surfaces with a soft cloth.

9.3 Analyzer Tests

1. Disconnect power and completely disconnect all output wiring coming from the analyzer. Remove sensor wiring, relay wiring, and analog output wiring. Re-apply power to the analyzer. Verify proper voltage (100-240 VAC or 12-24 VDC) is present on the incoming power strip of the analyzer, and that the analyzer power label matches the proper voltage value.

2. If analyzer does not appear to power up (no display), remove power and check removable fuse for continuity with a DVM.

3. If analyzer does power up with a display, use the “Simulate” feature to check operation of the analog outputs (and relays contacts with a DVM.)
9.31 Display Messages

The Q46 Series instruments provide a number of diagnostic messages which indicate problems during normal operation and calibration. These messages appear as prompts on the secondary line of the display or as items on the Fault List.

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>DESCRIPTION</th>
<th>POSSIBLE CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max is 200</td>
<td>Entry failed, maximum user value allowed is 2000.</td>
<td>Reduce value to (\leq 2000)</td>
</tr>
<tr>
<td>Min is 200</td>
<td>Entry failed, minimum value allowed is 20.</td>
<td>Increase value to (\geq 20)</td>
</tr>
<tr>
<td>Cal Unstable</td>
<td>Calibration problem, data too unstable to calibrate. Icons will not stop flashing if data is too unstable. User can bypass by pressing ENTER.</td>
<td>Clean sensor, get fresh cal solutions, allow temperature readings to fully stabilize, do not handle sensor or cable during calibration.</td>
</tr>
<tr>
<td>Out of Range</td>
<td>Input value is outside selected range of the specific list item being configured.</td>
<td>Check manual for limits of the function to be configured.</td>
</tr>
<tr>
<td>Locked!</td>
<td>Transmitter security setting is locked.</td>
<td>Enter security code to allow modifications to settings.</td>
</tr>
<tr>
<td>Unlocked!</td>
<td>Transmitter security has just been unlocked.</td>
<td>Displayed just after security code has been entered.</td>
</tr>
<tr>
<td>Offset High</td>
<td>The sensor zero offset point is out of the acceptable range.</td>
<td>Check wiring connections to sensor. Check optical surfaces for fouling.</td>
</tr>
<tr>
<td>Sensor High</td>
<td>The raw signal from the sensor is too high and out of instrument range.</td>
<td>Check wiring connections to sensor.</td>
</tr>
<tr>
<td>Sensor Low</td>
<td>The raw signal from the sensor is too low.</td>
<td>Check wiring connections to sensor.</td>
</tr>
<tr>
<td>Temp High</td>
<td>The temperature reading is (> 55^\circ C).</td>
<td>The temperature reading is over operating limits.</td>
</tr>
<tr>
<td>Temp Low</td>
<td>The temperature reading is (< -10^\circ C).</td>
<td>Same as "Temp High" above.</td>
</tr>
<tr>
<td>Cal Fail</td>
<td>Failure of turbidity calibration. FAIL icon will not extinguish until successful calibration has been performed, or 30 minutes passes with no keys being pressed.</td>
<td>Clean sensor and redo span calibration. If still failure, sensor slope may be less than 80% or greater than 120%. Replace sensor if failure persists.</td>
</tr>
<tr>
<td>TC Cal Fail</td>
<td>Failure of temperature calibration. FAIL icon will not extinguish until successful calibration has been performed, or 30 minutes passes with no keys being pressed.</td>
<td>Clean sensor, check cal solution temperature and repeat sensor temp calibration. TC calibration function only allows adjustments of (\pm 6^\circ C). Replace sensor if still failure.</td>
</tr>
<tr>
<td>EPROM Fail</td>
<td>Internal nonvolatile memory failure</td>
<td>System failure, consult factory.</td>
</tr>
<tr>
<td>Chcksum Fail</td>
<td>Internal software storage error.</td>
<td>System failure, consult factory.</td>
</tr>
<tr>
<td>Display Fail</td>
<td>Internal display driver fail.</td>
<td>System failure, consult factory.</td>
</tr>
</tbody>
</table>

Figure 17 - Display Messages
Spare Parts

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-0378</td>
<td>AC Powered monitor electronics assembly, 100-240 VAC</td>
</tr>
<tr>
<td>07-0379</td>
<td>DC Powered monitor electronics assembly 12-24 VDC</td>
</tr>
<tr>
<td>07-0380</td>
<td>AC Powered monitor electronics assembly w/Profibus, 100-240 VAC</td>
</tr>
<tr>
<td>07-0381</td>
<td>DC Powered monitor electronics assembly w/Profibus, 12-24 VDC</td>
</tr>
<tr>
<td>03-0445</td>
<td>Q46T Front Lid electronics assembly</td>
</tr>
<tr>
<td>03-0407</td>
<td>Q46 P/S Assy, 100-240VAC</td>
</tr>
<tr>
<td>03-0408</td>
<td>Q46 P/S Assy, 100-240VAC with 3rd 4-20mA output</td>
</tr>
<tr>
<td>03-0409</td>
<td>Q46 P/S Assy, 100-240VAC with 3 relay exp. board</td>
</tr>
<tr>
<td>03-0410</td>
<td>Q46 P/S Assy, 12-24 VDC</td>
</tr>
<tr>
<td>03-0411</td>
<td>Q46 P/S Assy, 12-24 VDC with 3rd 4-20mA output</td>
</tr>
<tr>
<td>03-0412</td>
<td>Q46 P/S Assy, 12-24 VDC with 3 relay exp. board</td>
</tr>
<tr>
<td>01-0353</td>
<td>Q-Blast Power PCB</td>
</tr>
<tr>
<td>63-0109</td>
<td>Turbidity Sensor, Digital IR</td>
</tr>
<tr>
<td>23-0029</td>
<td>Fuse, 630mA, 250V, TR-5 (for AC and DC Analyzers)</td>
</tr>
<tr>
<td>36-0040</td>
<td>Compression Pump, 12VDC</td>
</tr>
<tr>
<td>36-0041</td>
<td>Pump Mounting Kit</td>
</tr>
<tr>
<td>36-0039</td>
<td>Solenoid Valve, 12VDC</td>
</tr>
<tr>
<td>44-0040</td>
<td>PVC Tubing</td>
</tr>
<tr>
<td>31-0001</td>
<td>Interconnect cable (Junction Box to Transmitter)</td>
</tr>
<tr>
<td>38-0072</td>
<td>Terminal block plug, 3 position (Relays)</td>
</tr>
<tr>
<td>38-0073</td>
<td>Terminal block plug, 4 position (Outputs)</td>
</tr>
<tr>
<td>38-0074</td>
<td>Terminal block plug, 3 position (Cable Shields)</td>
</tr>
<tr>
<td>38-0081</td>
<td>Terminal block plug, 3 position (Power)</td>
</tr>
<tr>
<td>38-0084</td>
<td>Terminal block plug, 3 position (power) – VDC version*</td>
</tr>
</tbody>
</table>

NOTE: prior to Dec 2018, VDC (power) Terminal block used the (38-0081)

Lock/Unlock Code: 1472
PRODUCT WARRANTY

Analytical Technology, Inc. (Manufacturer) warrants to the Customer that if any part(s) of the Manufacturer’s equipment proves to be defective in materials or workmanship within the earlier of 18 months of the date of shipment or 12 months of the date of start-up, such defective parts will be repaired or replaced free of charge. Inspection and repairs to products thought to be defective within the warranty period will be completed at the Manufacturer's facilities in Collegeville, PA. Products on which warranty repairs are required shall be shipped freight prepaid to the Manufacturer. The product(s) will be returned freight prepaid and allowed if it is determined by the manufacturer that the part(s) failed due to defective materials or workmanship.

This warranty does not cover consumable items, batteries, or wear items subject to periodic replacement including lamps and fuses.

Gas sensors carry a 12 months from date of shipment warranty and are subject to inspection for evidence of misuse, abuse, alteration, improper storage, or extended exposure to excessive gas concentrations. Should inspection indicate that sensors have failed due to any of the above, the warranty shall not apply.

The Manufacturer assumes no liability for consequential damages of any kind, and the buyer by acceptance of this equipment will assume all liability for the consequences of its use or misuse by the Customer, his employees, or others. A defect within the meaning of this warranty is any part of any piece of a Manufacturer's product which shall, when such part is capable of being renewed, repaired, or replaced, operate to condemn such piece of equipment.

This warranty is in lieu of all other warranties (including without limiting the generality of the foregoing warranties of merchantability and fitness for a particular purpose), guarantees, obligations or liabilities expressed or implied by the Manufacturer or its representatives and by statute or rule of law.

This warranty is void if the Manufacturer's product(s) has been subject to misuse or abuse, or has not been operated or stored in accordance with instructions, or if the serial number has been removed.

Analytical Technology, Inc. makes no other warranty expressed or implied except as stated above.
<table>
<thead>
<tr>
<th>WATER QUALITY MONITORS</th>
<th>GAS DETECTION PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen</td>
<td>NH₃ Ammonia</td>
</tr>
<tr>
<td>Free Chlorine</td>
<td>CO Carbon Monoxide</td>
</tr>
<tr>
<td>Combined Chlorine</td>
<td>H₂ Hydrogen</td>
</tr>
<tr>
<td>Total Chlorine</td>
<td>NO Nitric Oxide</td>
</tr>
<tr>
<td>Residual Chlorine Dioxide</td>
<td>O₂ Oxygen</td>
</tr>
<tr>
<td>Potassium Permanganate</td>
<td>CO CO₂ Phosgene</td>
</tr>
<tr>
<td>Dissolved Ozone</td>
<td>Br₂ Bromine</td>
</tr>
<tr>
<td>pH/ORP</td>
<td>Cl₂ Chlorine</td>
</tr>
<tr>
<td>Conductivity</td>
<td>ClO₂ Chlorine Dioxide</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>F₂ Fluorine</td>
</tr>
<tr>
<td>Peracetic Acid</td>
<td>I₂ Iodine</td>
</tr>
<tr>
<td>Dissolved Sulfide</td>
<td>HX Acid Gases</td>
</tr>
<tr>
<td>Residual Sulfite</td>
<td>C₂H₄O Ethylene Oxide</td>
</tr>
<tr>
<td>Fluoride</td>
<td>C₂H₆O Alcohol</td>
</tr>
<tr>
<td>Dissolved Ammonia</td>
<td>O₃ Ozone</td>
</tr>
<tr>
<td>Turbidity</td>
<td>CH₄ Methane</td>
</tr>
<tr>
<td>Suspended Solids</td>
<td>(Combustible Gas)</td>
</tr>
<tr>
<td>Sludge Blanket Level</td>
<td>H₂O₂ Hydrogen Peroxide</td>
</tr>
<tr>
<td></td>
<td>HCl Hydrogen Chloride</td>
</tr>
<tr>
<td></td>
<td>HCN Hydrogen Cyanide</td>
</tr>
<tr>
<td></td>
<td>HF Hydrogen Fluoride</td>
</tr>
<tr>
<td></td>
<td>H₂S Hydrogen Sulfide</td>
</tr>
<tr>
<td></td>
<td>NO₂ Nitrogen Dioxide</td>
</tr>
<tr>
<td></td>
<td>NOₓ Oxides of Nitrogen</td>
</tr>
<tr>
<td></td>
<td>SO₂ Sulfur Dioxide</td>
</tr>
<tr>
<td></td>
<td>H₂Se Hydrogen Selenide</td>
</tr>
<tr>
<td></td>
<td>B₂H₆ Diborane</td>
</tr>
<tr>
<td></td>
<td>GeH₄ Germane</td>
</tr>
<tr>
<td></td>
<td>AsH₃ Arsine</td>
</tr>
<tr>
<td></td>
<td>PH₃ Phosphine</td>
</tr>
<tr>
<td></td>
<td>SiH₄ Silane</td>
</tr>
<tr>
<td></td>
<td>HCHO Formaldehyde</td>
</tr>
<tr>
<td></td>
<td>C₂H₄O₃ Peracetic Acid</td>
</tr>
<tr>
<td></td>
<td>DMA Dimethylamine</td>
</tr>
</tbody>
</table>