Table of Contents

Part 1 - Introduction __ 4
 1.1 General___4
 1.2 Q51 Data Logger __5
Part 2 - Specifications ___ 6
 2.1 General Specifications___6
 2.2 Performance Specifications (M-Node) _____________________________________6
Part 3 - Mechanical __ 9
Part 4 – Operation __ 11
 4.1 General___11
 4.2 Power and Battery Replacement __11
 4.3 Instrument Interface___12
 4.31 MEASURE Menu__15
 4.32 INFO Menu __16
 4.33 SENSOR Menu __16
 4.34 CONFIG Menu __17
Part 5 – Service Mode Operation Details ______________________________________ 22
 5.1 General___22
 5.2 Individual M-Node Service __22
Part 6 – DataLog Mode Operation Details _____________________________________ 23
 6.1 General___23
 6.2 Data File Format __23
 6.2 Data Logging Example __24
 6.3 ATI Data Utility __24
 6.4 Data Offload ___25
Spare Parts __ 28
TABLE OF FIGURES

FIGURE 1 – METRILOG DATA LOGGER ASSEMBLY .. 4
FIGURE 2 – Q51 CALIBRATOR/DATA LOGGER ... 5
FIGURE 3 - CALIBRATOR GENERAL DIAGRAM ... 9
FIGURE 4 – BATTERY REPLACEMENT .. 11
FIGURE 5 – PORTABLE METRINET INTERFACE ... 12
FIGURE 6 – SERVICE MODE SOFTWARE MAP .. 13
FIGURE 7 – DATA LOG MODE SOFTWARE MAP .. 14
FIGURE 8 – SINGLE M-NODE CALIBRATION IN BEAKER 22
FIGURE 9 – RAW DATA FORMAT ... 23
FIGURE 10 – CONNECTING Q51/METRINET TO WINDOWS PC VIA USB 25
FIGURE 11 – ATI Q51 DATALOG UTILITY .. 26
FIGURE 12 – STORING Q51 DATALOG FILE ... 26
FIGURE 13 – CONFIRMATION OF Q51 DATALOG FILE STORAGE 27
Part 1 - Introduction

1.1 General

The MetriLog is a portable battery powered tool for temporarily logging water quality data. It is a self-contained waterproof device containing a Q51 Mobile Calibrator/Data Logger and an internal flowcell assembly that uses Q32 water quality sensors. Any of the water quality sensors listed below may be used in the MetriLog.

Figure 1 – MetriLog Data Logger Assembly

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Chlorine</td>
<td>0-5.00 ppm</td>
<td>0.01 ppm</td>
</tr>
<tr>
<td>Combined Chlorine</td>
<td>0-5.00 ppm</td>
<td>0.01 ppm</td>
</tr>
<tr>
<td>Total Chlorine</td>
<td>0-5.00 ppm</td>
<td>0.01 ppm</td>
</tr>
<tr>
<td>Turbidity</td>
<td>0-40.00 NTU</td>
<td>0.01 NTU</td>
</tr>
<tr>
<td>pH</td>
<td>0-14.00 pH</td>
<td>0.01 pH</td>
</tr>
<tr>
<td>Conductivity</td>
<td>0-2000 µS</td>
<td>1 µS</td>
</tr>
<tr>
<td>ORP</td>
<td>0-1000 mV</td>
<td>1 mV</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>0-20.00 ppm</td>
<td>0.01 ppm</td>
</tr>
<tr>
<td>Fluoride</td>
<td>0.1-10.00 ppm</td>
<td>0.01 ppm</td>
</tr>
<tr>
<td>Dissolved Ozone</td>
<td>0-2.000 ppm</td>
<td>0.001 ppm</td>
</tr>
<tr>
<td>Chlorine Dioxide</td>
<td>0-5.00 ppm</td>
<td>0.01 ppm</td>
</tr>
<tr>
<td>Peracetic Acid</td>
<td>0-200 ppm</td>
<td>1 ppm</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>0-20.00 ppm</td>
<td>0.01 ppm</td>
</tr>
<tr>
<td>Pressure</td>
<td>0-300 PSI</td>
<td>1 PSIG</td>
</tr>
<tr>
<td>Nitrite</td>
<td>0-2.000 ppm</td>
<td>0.001 ppm</td>
</tr>
</tbody>
</table>
There are two versions of the MetriLog, one containing a clear flowcell that accommodates most sensor types and one containing a black flowcell. The black flowcell is required when using the turbidity sensor to avoid ambient light interference. You can switch from one type of flowcell to the other by simply disconnecting inlet and outlet tubing.

On the side of the MetriLog are two quick-connect fittings where sample inlet and drain lines are connected. Provided with the unit are two mating connectors, each with 5 ft. of tubing. Also supplied are two ¼” MNPT x ¼” O.D tube fittings to adapt user plumbing to the supplied tubing. Note that all connectors have internal valved. When disconnected, sample flow will stop and sample in the flowcell will remain captured in the cell.

The flowcell in the MetriLog contains a fixed flow control element in the flowcell outlet fitting. It will maintain a flow of about 0.25 LPM (4 GPH) when connected to pressurized sample lines between 2 and 60 PSIG (0.13 to 4 Bar).

1.2 Q51 Data Logger

The MetriLog is built around ATIs Model Q51 portable calibrator & data logger. This device is designed for two functions, setup and calibration of Q32 M-Node sensors and temporary logging of sensor data for later download to a PC. The M-Node sensor cable plugs into one of the connectors on the side of the logger while a second connector with protective cover is a USB port for downloading data to a PC. The logger operates from 3 internal AA size alkaline batteries.

In operation, the Q51 logs measurement data at an interval programmed by the user, from a minimum of every 1 minute to a maximum of 99 minutes. Data is stored in on-board non-volatile memory which may be offloaded with a PC using a USB cable and the ATI Data Log Utility software on a PC.
Part 2 - Specifications

2.1 General Specifications

Displayed Parameters (for each M-Node)
Four digit node measurement (ppm, NTU, pH, etc)
Sensor temperature, -10.0 to 55.0 °C (14 to 131 °F)
Other measurement displays on lower line dependent on specific sensor

Display
128 x 64 OLED graphic display,
2.2” (57mm) x 1.1” (29mm) viewable

Data Logger
Internal 4MB SPI Flash memory. Data is removed via USB cable and special ATI PC program.

Controls
4-key polycarbonate keypad, UV resistant coating

Power
Three AA batteries

Node Connection
M8 waterproof connector

Data Connection
USB connector with waterproof cover

Ambient Temperature
Operating: 0 to 5°C (32 to 122 °F)
Storage, -5 to 70 °C (23 to 158 °F)

Ambient Humidity
0 to 95%, indoor/outdoor use, non-condensing to rated ambient temperature range

Environmental
RoHS Compliant

EMI/RFI Influence
Designed to EN 61326-1

Enclosure
ABS, Polycarbonate, and Thermoplastic Rubber
LWD: 11.1” (282 mm) x 6.9” (175 mm) x 3.9” (99 mm)

Weight
5 lb (2.3 kg) with batteries

2.2 Performance Specifications (M-Node)

Accuracy
Sensor Dependent

Repeatability
Sensor Dependent

Sensitivity
0.1% of range

Non-Linearity
0.5% of range
Supply Voltage Effects

+/- 0.05% of range

Power

When running continuously in Service Mode with one Q32P sensor, approximately 30 mA DC @ 4.6 VDC, or 138 mW. Off-state leakage current approximately 12 µA.

When running in data logger mode, the instrument will show the same 30 mA DC @ 4.6 VDC, or 138 mW when a user is calibrating or configuring a single Q32P sensor. However, the instrument operates in ON-OFF cycles in data logger mode, and automatically drops to a “sleep” mode during non-measurement times and after display time-out occurs. During sleep, the instrument consumers only about 1.4 mA @ 4.6 VDC, or about 6.4 mW.

*Note- Other than the Q32 turbidity sensor, all other M-Node sensors consume approximately the same of power. The Q32T consumes about 2x the power of the standard M-Node.

Service Mode

Battery operating time is highly dependent on user settings, type and number of sensors, and how often instrument is used.
Typical 5 hours per week with one Q32P: 3 months
Continuous running with one Q32P: 2-3 days

*Note- Assumes 2500 mA AA-alkaline batteries used. Other than the Q32T, all other M-Node sensors consume approximately the same of power. The Q32T consumes about 2x the power of the standard M-Node.

Data Log Mode

Battery operating time is highly dependent on user logging settings, and type and number of sensors. The OLED display is OFF the majority of the time in data logger mode. A sleeping Q51/MetriNet consumes about 1.4 mA @ 4.6V, or 6.4 mW. Active current, or “pulse power,” then adds to that to calculate final average power over some period of time. Calculating this total power can be a little complex as the pulse of high current must be average over some period of sleep time. Batteries see average power.

Some typical power examples based on user settings:
1- One Q32P sensor, sensor delay 10 sec, log interval 15 min.
So the Q51/MetriNet + Q32P consumes 13 mA @ 4.6V when active for only 10 seconds per 15 min. Average active power per hour is then 0.6 mW. Add baseline sleep power of 6.4 mW for a total average power of 7 mW.
Run-time estimate of 1645 hours or about 2 months
2- One Q32P sensor, sensor delay 10 sec, log interval 1 min. So the Q51/MetriNet + Q32P consumes 13 mA @ 4.6V when active for only 10 seconds per minute. Average active power per minute is then 10 mW. Add baseline sleep power of 6.4 mW for a total average power of 16.4 mW.

Run-time estimate of 701 hours or about 30 days

3- Three sensors, Q32P, Q32T, Q32H0, sensor delay 30 sec, log interval 15 min. So the Q51/MetriNet + Q32P/Q32T/Q32H0 consumes 35 mA @ 4.6V when active for only 30 seconds per 15 minutes. Average active power is then 5.4 mW. Add baseline sleep power of 6.4 mW for a total average power of 11.8 mW.

Run-time estimate of 974 hours or about 40 days

Note: Display is off in all cases above. Assumes 2500 mA AA-alkaline batteries used. Other than the Q32T, all other M-Node sensors consume approximately the same of power. The Q32T consumes about 2x the power of the standard M-Node. The biggest influence in battery life for datalogger mode is how often samples are taken, as all sensors are powered up at that time.

Equipment bearing this marking may not be discarded by traditional methods in the European community after August 12 2005 per EU Directive 2002/96/EC. End users must return old equipment to the manufacturer for proper disposal.
Part 3 - Mechanical

3.1 General

MetriLog data loggers are self-contained instruments housed in an IP-68 enclosure and will withstand nearly any type of installation environment. As with anything operating with running water, it must be used only when temperatures are above 0° C or 32° F. Note that most batteries do not provide full rated amp-hours when operating at cold temperatures. If used outdoors, avoid locating the unit in direct sunlight if ambient temperatures above 40° C are expected.

Sample to the logger must be limited to pressures below 60 PSI (4 Bar) and sample temperatures must be below 50° C. Use a pressure regulator ahead of the logger for applications where sample pressure is above 60 PSI.

Avoid applications where sample temperature can change rapidly by more than 10° C in 5-10 minutes as rapid thermal expansion and contraction can shorten sensor life. Slow temperature changes of a few degrees per hour have little effect on sensor life.

![Figure 3 – MetriLog Dimensions](image)

Figure 3 – MetriLog Dimensions
Figure 4 - Typical Installation
4.1 General

The Q51 Logger operates in two distinct modes of operation, Service (Srvc) and DataLog (DLog.) These modes are selected the moment the instrument is first turned ON.

- **Service Mode** is for general calibration and configuration of M-Node sensors.
- **DataLog Mode** is selected to create a complete remote data logger system.

4.2 Power and Battery Replacement

To turn instrument ON, momentarily press and hold ON/OFF key. To turn the instrument OFF, press and hold the ON/OFF key for 7 seconds. The query “Shut Down?” will appear, with NO displayed. Change No to YES, and press ENTER.

The display has a battery ICON in the upper right corner that indicates how much battery life remains. This symbolic representation varies based upon the measured battery voltage. In addition, one of the lower INFO screens displays specific battery voltage level. The unit will operate down to about 2.7V of total battery voltage, and several battery life examples are shown in the Performance Specifications section.

If the instrument is plugged into a USB host device and is currently OFF, the display will periodically display the message “Bus Power On.” The instrument is in “sleep mode” when plugged into USB power, as the USB connection is only used for offloading data. However, the sensor bus power is turned on, so the unit can be used in this way to polarize sensors without using up battery power.

In Service Mode, the display and sensor measurement will remain active until the instrument is turned OFF, or until no key is pressed for 30 minutes. After 30 minutes of no key press, the instrument automatically shuts down.

Batteries are easily replaced by removing protective boot, and then sliding off lower battery cover.
4.3 Instrument Interface

The user interface for the portable Q51 consists of a graphical OED display and a membrane keypad. All functions are accessed from this user interface.

![Portable MetriNet Interface](image)

Figure 6 – Portable MetriNet Interface

The interface is organized around 4 main menu tree branches: MEASURE, INFO, SENSOR and CONFIG. The MEASURE and SENSOR menu displayed data is controlled by the individual M-Node sensor, while INFO contains display-only information about the Q51/MetriNet system. The CONFIG menu contains Q51/MetriNet setup parameters. Depending on the mode of operation, the software map will appear in two different arrangements.
Notes:
(1) S1 refers to Sensor Position, additional fields will appear depending on amount of sensor installed. These fields can be accessed by pressing the left arrow on the display panel.

Figure 7 – Service Mode Software Map
Figure 8 – Data Log Mode Software Map

Notes:
(1) S1 refers to Sensor Position, additional fields will appear depending on amount of sensor installed. These fields can be accessed by pressing the left arrow on the display panel.
4.31 MEASURE Menu

The default menu is MEASURE. This menu is display-only. When left alone, the unit will return to the MEASURE menu after 30 minutes. The lower line information applies to the node currently displayed. To look at information on an individual node, press the ↪ key. After selecting the node you wish to look at, use the ▲ key to scroll through variables on the lower display line. The information is not exactly the same for every node but includes the following.

NOTE: The S1 designation means sensor #1 and will change for each sensor.

<table>
<thead>
<tr>
<th>S1</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.7°C</td>
<td>Temperature display. Can be displayed in °C or °F, depending on user selection.</td>
</tr>
<tr>
<td>32.0 nA</td>
<td>Raw sensor data. Could be mA, mV., or other.</td>
</tr>
<tr>
<td>100%</td>
<td>Sensor output response vs. ideal calibration. Also referred to as sensor “slope” and indicates sensor condition. Value updates after each calibration.</td>
</tr>
<tr>
<td>0.0 nAz</td>
<td>Sensor output current at a zero ppm input. Value updates after a zero-calibration.</td>
</tr>
<tr>
<td>0001d</td>
<td>Sensor life run-time in days. Indicates how long the sensor has been in operation.</td>
</tr>
<tr>
<td>Cal 10d</td>
<td>Calibration timer. Indicates number of days since last calibration.</td>
</tr>
<tr>
<td>AL=ABCDE</td>
<td>Alarm indicator. Shows which alarms are active.</td>
</tr>
<tr>
<td>2.50VDC</td>
<td>Sensor voltage output (only shown for Q32 sensors.)</td>
</tr>
<tr>
<td>No Fault</td>
<td>Sensor fail message to define detected fault condition.</td>
</tr>
<tr>
<td>Q32H0</td>
<td>Sensor model number.</td>
</tr>
<tr>
<td>VX.XX</td>
<td>Sensor firmware version</td>
</tr>
<tr>
<td>Res Clr/0-5.00</td>
<td>Identifies type of measurement and overall range. Display alternates between measurement type and range. This is the text TAG field, and it can be modified in some newer sensors.</td>
</tr>
</tbody>
</table>

To manually sequence through the M-nodes, press the ↪ key. By pressing the ↪ key repeatedly, you can cycle through all S1-S8 measurements. If no key is activated for 30 minutes, the display will revert to scan mode. When you select a specific S-# sensor using the ↪ key, you can then sequence through the information screens on the bottom line using the ▲ key.

Once you have selected a specific node, you can go to the SENSOR menu for that node by pressing Menu twice. From the SENSOR menu, you can adjust sensor zero and sensor span, calibrate temperature, set alarms, and adjust other settings.
NOTE: If passwords are enabled, you must enter your password in order to make sensor adjustments.

4.32 INFO Menu

The INFO menu provides some basic reference-only information on the Q51. Since the portable runs in two distinct modes, Service and DataLog, the display here changes slightly based on which mode is running.

INFO items shown in Srvc Mode:
- 13:59:40 Hour/Minute/Sec time. 24-hour format.
- Jan 20, 2000 Current date
- Q51 Ver X.XX Q51 software version number
- DC In = 4.6 Measured DC input voltage (from battery or power supply)

INFO items shown in Dlog Mode:
- 13:59:40 Hour/Minute/Sec time. 24-hour format.
- Jan 20, 2000 Current date
- 10min 40sec Time until next data point is recorded.
- LAT 1234.56N User entered latitude position
- LON 1234.56W User entered longitude position
- Q51 VX.XX Q51 software version number
- DC In = 4.6 Measured DC input voltage from battery supply

4.33 SENSOR Menu

The SENSOR menu provides all M-Node sensor configuration and calibration functions. This menu information largely originates from sensor memory and there is some variation in the exact menu displays from sensor type to sensor type. The information below illustrates a free chlorine sensor as an example.

The functions outlined below allow users to adjust various parameters and calibrate sensors. When making adjustments, pressing Enter will normally start the process. Values may be adjusted using the ▲ and ◄ keys. Pressing Enter again will accept the changes. Pressing Menu/Esc during a routine will cancel the adjustment and go back to the starting screen.

- Cal Chlr S1 Calibration routine for sensor span adjustment
- Cal Zero S1 Calibration routine for sensor zero adjustment
- Cal TC S1 Temperature calibration routine
- Delay S1 Routine for adjustment of sensor “damping” or response time
- Set 0V S1 Routine to adjust zero value for 0-2.5 V output. No adjustment necessary for sensors used with MetriNet systems. Used to set up sensors for other applications. Q32 sensors only.
Set 2.5V S1 Routine to adjust full scale value for 0-2.5 V output. No adjustment necessary for sensors used with MetriNet systems. Used to set up sensors for other applications. Q32 sensors only.

Alarm A S1 Setpoint for Alarm A. User may define an alarm limit above which the A alarm will be shown in the MEASURE menu.

Alarm B S1 Setpoint for Alarm B. User may define a second alarm limit above which the B alarm will be shown in the MEASURE menu.

Slp Alrm S1 User may define a “slope” alarm limit. If the sensor slope falls below that limit after a calibration, Alarm C is shown in the MEASURE menu.

Tmr Alrm S1 User may define an alarm limit for the time between calibrations. If a calibration is not done within the defined time period, Alarm D is shown in the MEASURE menu.

Tmp Unit S1 Allows temperature reading in degrees C or degrees F.

Tmp Comp S1 Allows modification of sensor temperature compensation.

Nom Slp S1 Normalizes slope to 100%. May be done after a sensor has been serviced and calibrated for the first time.

Clr Data S1 Resets all sensor stored data to factory default values.

4.34 CONFIG Menu

The CONFIG menu provides access to the Q51/MetriNet system configuration settings. Routines defined here are not sensor specific. Since the portable Q51/MetriNet can be operated in one of two modes, Service, or DataLog, the menu listing will appear slightly different in either case, as different functions are required.

Menus shown in Srvc Mode:
- Tag Edit: Editor for TAG name in M-Node sensor
- Contrast: Sets OLED graphic display contrast level
- Total Snsr: Sets total number of sensors, 1-8, the system will query
- Disply Snsr: Displays whether sensor 1-8 is readable
- Addr Snsr: Configures unique slave address of sensor
- Password: Sets system user passwords

Menus shown in Dlog Mode:
- Log Mode: Configures data log to either wrap or fill
- Log Interval: Sets measurement time period
- Clear Log: Clears old data from stored measurement memory
- Contrast: Sets OLED graphic display contrast level
- Dsp Timeout: Sets the amount of time display stays active after last key press
ATI *MetriLog* Data Logger

Part 4 – Operation

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Time</td>
<td>Set current time of day</td>
</tr>
<tr>
<td>Set Date</td>
<td>Set current date</td>
</tr>
<tr>
<td>Total Snsr</td>
<td>Sets total number of sensors, 1-8, that the system will query</td>
</tr>
<tr>
<td>Sensr Delay</td>
<td>Set the amount of time sensor is running before measuring</td>
</tr>
<tr>
<td>Password</td>
<td>Set system user password</td>
</tr>
<tr>
<td>GPS Entry</td>
<td>Set location</td>
</tr>
</tbody>
</table>

Details on Individual Srvc/Dlog Menus –

Tag Edit
Used to edit the Tag Field in the M-Node Sensor. The tag editor function allows the user to edit the sensor tag field (two-line text string) in the M-Node sensors. The Tag Edit function is only available in the Service Mode.

1. In the CONFIG menu, select Tag Edit and press ENTER.
2. The available characters that may be entered are displayed. On the lower line of the display, the tag stored in the selected sensor is displayed. The character that is blinking is the character that will be changed or overwritten. The underlined character is the character that is selected. Use the ▲ key to select the line, and the ◄ key to move the characters on the selected line to the underlined position.
3. Press the ENTER key to select the character. The blinking character will advance to the next position.
4. When finished editing the lower line, press the MENU key.
5. The unit will prompt to Write Data? (Yes/No). Change the Yes/No prompt using the ▲ key, then press ENTER.

Note – this feature may not yet be supported by all M-Node sensors.

Contrast
Used to adjust display contrast. Default is 1. Range is 1-8. Lowest value consumes the least amount of power.

Total Snsr
1-8. Total sensors connected.

1. Press Menu key to access CONFIG menu.
2. Press ▲ key until lower line display shows “Total Snsr”.
3. Press Enter and the main number on the display will flash.
4. Use the ▲ key to adjust the flashing number to the total number of sensors in your system and then press Enter.

Display Snsr
Tests communication to each sensor. Press Enter and status of comms for each sensor is tested. Sensor found indicate “Yes” while sensors not found indicate “No”. Press Enter again to exit.

Addr Snsr
Each measurement node must have a unique sensor number. By default, all sensors shipped from ATI are set to sensor #1. If there is more than one sensor in your system, a new sensor number must be assigned to each additional sensor. Only one sensor can be connected to the Q51 during this address setting operation. BEFORE SETTING ADDRESS, make sure you have correctly set the total numbers of sensors being used,
as that setting limits the addresses you can enter here. Also, this menu will not appear if more than one sensor is connected to sensor bus.

1. Press Menu key to access CONFIG menu.
2. Press the ▲ key 5 times to access “Addr Snsr” and then press Enter.
3. The display will flash “NO”. Press ▲ once for “YES” and press Enter.
4. The controller will show the current sensor number assigned to that node and it will be flashing. Use the ▲ key to set the required sensor number and press Enter.
5. Repeat steps 1-4 for each M-Node in the system until you have assigned a unique number to each one.

Passwords

0000. A single 4-digit password. The Q51/MetriNet is designed with a single level of password protection to prevent unauthorized adjustments. The password is numerical, consisting of 4-digit numbers. As shipped, the Q51/MetriNet is not password protected. The user must decide whether to use password protection or not.

1. Go to CONFIG Menu and press ▲ repeatedly until bottom line indicates Password.
2. Press Enter. Display will show 0000 with right digit flashing. Using the ▲ and◄ keys, enter a 4-digit supervisor password.
3. Press Enter and that number will be recorded.

Note: Consult Factory for password reset instructions, if forgotten.

Log Mode

Continuous/Full. Data held in flash memory may be recorded until the memory is full or it may be stored in a circular file, with the oldest data overwritten by the newest data once the memory is full. The selection is made here. Choosing “Cont” selects a circular file mode of operation. Selecting “Full” stops the data logging when the memory is full.

Log Interval

1-120 minutes. Interval of measured data storage.

Clear Log

YES/NO. This routine clears all data stored in flash memory. Once cleared, it cannot be recovered. Verify that all data has been saved (or is not needed) prior to clearing the log.

Display Timeout

15 sec, 30 sec, 1 min, 2 min, 5 min, continuous. Enter the time to shut off display after no key press. This is a power saving feature used to disable display during logging mode.

Set Time

Used to program current time. After pressing Enter, use a combination of the ▲ and Enter keys to adjust hours, minutes, and AM/PM.

Hours 1-12.
Minutes 0-59.
AM/PM AM/PM.

Set Date

Used to program current date. After pressing Enter, use a combination of the ▲ and Enter keys to adjust year, month, and day.

Year 00-99. Enter current year.
Month 1-12. Enter current month
Day 1-31. Enter current day

Sensor Delay

0-99 seconds. A delay time before sensor is read, after sensor has been powered up. This is used in datalogging mode when instrument is cycling on and off. NOTE – The Q32T requires a sensor delay of at least 25 seconds after power up.
<table>
<thead>
<tr>
<th>GPS Entry</th>
<th>Manual entry of GPS Latitude and Longitude Data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat Degrees</td>
<td>Range is 0 – 90. Enter the first two digits (DD) of the Latitude. Format for Latitude is DDMM.MM N/S.</td>
</tr>
<tr>
<td>Lat Minutes</td>
<td>Range is 00.00 – 99.00. Enter the next four digits (MM.MM) of the Latitude.</td>
</tr>
<tr>
<td>Lat N-S</td>
<td>Enter N for North, enter S for South.</td>
</tr>
<tr>
<td>Lon Degrees</td>
<td>Range is 0 – 90. Enter the first three digits (DD) of the Longitude. Format for Longitude is DDDMM.MM E/W.</td>
</tr>
<tr>
<td>Lon Minutes</td>
<td>Range is 00.00 – 99.00. Enter the next four digits (MM.MM) of the Longitude.</td>
</tr>
<tr>
<td>Lon E-W</td>
<td>Enter E for East, enter U for West.</td>
</tr>
</tbody>
</table>
Part 5 – Service Mode

5.1 General

As the Q51/MetriNet instrument operates in one of two distinct modes of operation on start-up, Service or DataLog, this section gives specific information on the use of the instrument in the Service Mode using an example.

5.2 Individual M-Node Service

The primary usage of the Portable MetriNet is to simply service or configure a single M-Node sensor. Only one sensor is connected, and it will appear on the instrument at address 1-8 if the instrument is set to 8 total sensors. Once the sensor is connected to the instrument, the user simply scrolls through S1 to S8 on the front MEASURE display until they see a valid sensor at a valid S address. From there, they can then access all the internal menus of the sensor and configure or calibrate that single sensor.

An example of operation –
1- Make sure the Q51/MetriNet is set to 8 total sensors. Connect one sensor.
3- Turn Q51/MetriNet ON, and select SRVC mode operation.
4- Once the Q51/MetriNet display comes up, it will show sensor S1 data, or “Err” as no sensor is detected at S1.
5- If this S1 is not the same as the sensor address connected, simply press the ◀ key to move from S1 to S2, S3, etc. When valid data appears, this is the address of the connected sensor.
6- You may now operate all the sensor menus in the SENSOR menu listing to fully configure the sensor.

*NOTE - The Q51/MetriNet will only allow you to scan the number of sensors configured in the menu ^Total Sensors.
Part 6 – DataLog Mode

6.1 General

As the instrument operates in one of two distinct modes of operation on start-up, Service or DataLog, this section gives specific information on the use of the instrument in the Data Log Mode using several examples.

Data Log Mode would be used in cases where the Q51/Metrinet might be deployed for a period of time to gather data from 1-8 sensors. It can run for up to 30 days in cycle mode operation, cycling and collecting data much like the Q52/MetriNet.

Note that the instrument is always in “cycle mode” of operation during Data Logging. So, the instrument only has an active display when a key is touched. The display is shut down and the unit goes to sleep in between measurement interval times to save power.

The display will remain active for the Display Timeout time, and then shut down to conserve power. The instrument is still operating during this display-off time. The timer will restart any time a key is pressed. Once the display is active again, the sensors will be powered up and read continuously, so that the user can scroll through them. Once the timer times out, the display will turn off and the sensor power will also turn off – waiting for the next cycled measurement time. The cycle mode will now begin to wake up and poll the sensors at the selected Log Interval. Each time the sensor(s) are read, the data will be written to the data log flash memory.

6.2 Data File Format

Data stored inside the Q51/Metrinet in a standard *.CSV format. Data can be easily displayed and analyzed using Excel or other spreadsheet programs. Shown below is part of a typical data file that has uploaded to the ATI Q51 Data Utility.

![Figure 10 – Raw Data Format](image-url)
All data is stored as 16-bit data with 4 decimal resolution. In order to convert raw data to actual engineering units, simply divide each value by 1000. So, 7140 would represent 7.140 pH for a Q32P sensor. Since each instrument can accommodate up to 8 nodes, zero values are stored for each unused sensor input. Data manipulation such as appending files and generating graphical reports is left to the user.

The time period required to fill the memory depends on how many nodes are connected and how often data is stored. A controller with a maximum of 8 nodes logging data every 6 seconds can store 48 hours of data. That’s about 230,000 data points. A more typical application with 4 M-Nodes taking data once every 10 minutes will hold about 239 days of data.

Data held in flash memory may be recorded until the memory is full or it may be stored in a circular file, with the oldest data overwritten by the newest data once the memory is full. The selection is made in the “Log Mode” routine of the CONFIG menu. Choosing “Cont” selects a circular file mode of operation. Selecting “Full” stops the data logging when the memory is full.

6.2 Data Logging Example

As an example of a logging set up, consider a 3-sensor example, Q23H, Q32P, Q32T. This example assumes time and date are already correct, and GPS entered location is correct - if even required.

1. **Turn on Q51/MetriNet and enter Dlog mode.**
2. **In CONFIG, set ^Log Mode to Cont.**
 - This means our storage log will be in continuous mode.
3. **In CONFIG, set ^Log Interval to 15 Min.**
 - This is how often we will power up the sensors and take a measurement. Battery power is consumed much faster at a lower interval rate.
4. **In CONFIG, set ^Dsp Timeout to 15 seconds.**
 - This is how long the display will stay active after the last key is pressed. Battery power is consumed much faster at a higher timeout value.
5. **In CONFIG, set ^Sensr Delay to 25 seconds.**
 - This is how long the sensors will stay powered up before a reading is recorded. Most sensors only require about 5-10 seconds for a valid reading after power up. However, the Q32T sensor needs at least 25 seconds before a reading can be produced, so we have to account for that requirement. Battery power is consumed much faster at a higher delay value.

Once set up, simply leave the Q51/MetriNet in a safe location connected to the sensors and it will continually record data, cycling ON and OFF. The sensors are not active all the time, they are powered ON and OFF as required to save maximum power. Our 3 sensor example above will run for roughly 30 days on a fresh set of AA alkaline batteries. Quality rechargeable AA batteries like Panasonic Eneloop may also be used and are highly recommended. The run-time of the unit is highly dependent on the user settings above, and also on the number and type of sensors being used.

6.3 ATI Data Utility

First, the ATI free data management software must be installed. Install the Windows program to any Windows PC prior to connecting the Q51 Portable MetriNet. The free software utility is located for download here –

NOTE: When installing the software onto your PC, make sure you have internet access as the installation utility may look for drivers needed for the program to run that may not be on your PC during the installation. Also, when you connect your PC to the Q51/MetriNet for the first time, your PC may need to install the driver for the virtual com port needed to communicate with the Q51/MetriNet. Once all drivers are installed, everything will work even if your PC is not connected to the internet.

6.4 Data Offload

To remove data, first turn OFF the Q51/MetriNet. Next, make a connection via any USB cable to the ATI Q51 instrument. Any USB cable along with the ATI Q51 DataLog Utility is used to remove data stored on the Q51/MetriNet instrument.

![Connecting Q51/MetriNet to Windows PC via USB](image)

Figure 11 – Connecting Q51/MetriNet to Windows PC via USB

Once software is installed and Q51/MetriNet is connected to that PC, launch the Q51 Datalog utility. The screen below will be displayed. Click on Read Data Log.
Clinking on Clear Data Log permanently removes all data memory from the Q51/MetriNet, like the Clear log function on the instrument. Next, a window will be displayed for the location of data storage. Enter a name for the file and press Ave. The default location for data is `C:/This PC/Documents/Analytical Technologies/Q51 Datalog Files/`

A confirmation will appear stating the file has been saved. Close window to finish program.
Figure 14 – Confirmation of Q51 Datalog File Storage
Spare Parts

Part No. **Description**

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-1798</td>
<td>Q51 Calibrator & Data Logger</td>
</tr>
<tr>
<td>31-0202</td>
<td>M-Node sensor cable</td>
</tr>
<tr>
<td>31-0216</td>
<td>USB data cable</td>
</tr>
<tr>
<td>00-1920</td>
<td>Clear Flowcell with fittings</td>
</tr>
<tr>
<td>00-1921</td>
<td>Black Flowcell with fittings</td>
</tr>
<tr>
<td>44-0296</td>
<td>Flowcell inlet fitting, ¼” NPT x ¼” OD tube</td>
</tr>
<tr>
<td>03-0525</td>
<td>Flowcell outlet fitting with 0.25 LPM regulator</td>
</tr>
<tr>
<td>44-0276</td>
<td>Polyethylene tubing, black</td>
</tr>
<tr>
<td>44-0287</td>
<td>Enclosure bulkhead fitting with valve</td>
</tr>
<tr>
<td>44-0288</td>
<td>Quick-connect plug with valve for ¼” OD tube</td>
</tr>
</tbody>
</table>
Sensors

- **00-1847** Free Chlorine M-Node, 0-5.00 ppm
- **00-1848** Conductivity M-Node, 0-2000 uS
- **00-1849** pH M-Node, 2-12 pH
- **00-1850** ORP M-Node, 0-1000 mv.
- **00-1851** Dissolved Oxygen M-Node, 0-20.00 ppm
- **00-1852** Dissolved Ozone M-Node, 0-2.000 ppm
- **00-1853** Turbidity M-Node, 0-40.00
- **00-1854** Combined Chlorine M-Node, 0-5.00 ppm
- **00-1855** Total Chlorine M-Node, 0-5.00 ppm
- **00-1856** Fluoride M-Node, 0.1-10.00 ppm
- **00-1857** Chlorine Dioxide M-Node, 0-5.00 ppm
- **00-1858** Peracetic Acid M-Node, 0-200 ppm
- **00-1859** Hydrogen Peroxide M-Node, 0-20.00 ppm
- **00-1860** 4E Conductivity M-Node, 0-2000 mS
- **00-1864** Pressure M-Node, 0-300 PSIG (0-20 Bar)
- **00-1861** Nitrite M-Node, 0-2.000 ppm

Spare Sensor Components

- **03-0511** Electrolyte chamber, Q32 Sensors $50.00
- **05-0121** Q32 Electrolyte Chamber o-ring kit (3 each 42-0029 and 42-0061) $20.00
- **45-0354** Membrane Holder, PVC $35.00
- **48-0197** Membrane holder, titanium (for DO₂ and DO₃ sensors) $75.00
- **05-0120** Free chlorine membranes, pkg. of 10 $30.00
- **05-0128** Combined chlorine membranes, pkg. of 10 $35.00
- **05-0122** Total Chlorine membrane cap, pkg. of 2 $90.00
- **09-0087** Free chlorine electrolyte, 60 ml. $20.00
- **09-0088** Combined chlorine electrolyte, 60 ml. $20.00
- **09-0089** Total chlorine electrolyte, 60 ml. $25.00
- **09-0091** pH/ORP/Fl⁻ Reference gel $25.00
- **02-0245** pH/ORP/Fl⁻ Reference Junction $85.00
- **05-0135** D.O. membrane, 2-mil, pkg. of 10 $20.00
- **09-0090** D.O. electrolyte, 60 ml. $20.00
- **05-0146** Nitrite Membrane, pkg. of 10 $45.00
- **09-0146** Nitrite Electrolyte, 60 ml. $35.00
PRODUCT WARRANTY

Analytical Technology, Inc. (Manufacturer) warrants to the Customer that if any part(s) of the Manufacturer’s equipment proves to be defective in materials or workmanship within the earlier of 18 months of the date of shipment or 12 months of the date of start-up, such defective parts will be repaired or replaced free of charge. Inspection and repairs to products thought to be defective within the warranty period will be completed at the Manufacturer’s facilities in Collegeville, PA. Products on which warranty repairs are required shall be shipped freight prepaid to the Manufacturer. The product(s) will be returned freight prepaid if it is determined by the manufacturer that the part(s) failed due to defective materials or workmanship.

This warranty does not cover consumable items, batteries, or wear items subject to periodic replacement including lamps and fuses.

Gas sensors carry a 12 months from date of shipment warranty and are subject to inspection for evidence of misuse, abuse, alteration, improper storage, or extended exposure to excessive gas concentrations. Should inspection indicate that sensors have failed due to any of the above, the warranty shall not apply.

The Manufacturer assumes no liability for consequential damages of any kind, and the buyer by acceptance of this equipment will assume all liability for the consequences of its use or misuse by the Customer, his employees, or others. A defect within the meaning of this warranty is any part of any piece of a Manufacturer’s product which shall, when such part is capable of being renewed, repaired, or replaced, operate to condemn such piece of equipment.

This warranty is in lieu of all other warranties (including without limiting the generality of the foregoing warranties of merchantability and fitness for a particular purpose), guarantees, obligations or liabilities expressed or implied by the Manufacturer or its representatives and by statute or rule of law.

This warranty is void if the Manufacturer’s product(s) has been subject to misuse or abuse, or has not been operated or stored in accordance with instructions, or if the serial number has been removed.

Analytical Technology, Inc. makes no other warranty expressed or implied except as stated above.
WATER QUALITY MONITORS

Dissolved Oxygen
Free Chlorine
Combined Chlorine
Total Chlorine
Residual Chlorine Dioxide
Potassium Permanganate
Dissolved Ozone
pH/ORP
Conductivity
Hydrogen Peroxide
Peracetic Acid
Dissolved Sulfide
Residual Sulfite
Fluoride
Dissolved Ammonia
Turbidity
Suspended Solids
Sludge Blanket Level

MetriNet Distribution Monitor

GAS DETECTION PRODUCTS

NH₃ Ammonia
CO Carbon Monoxide
H₂ Hydrogen
NO Nitric Oxide
O₂ Oxygen
Cl₂ Chlorine
ClO₂ Chlorine Dioxide
F₂ Fluorine
I₂ Iodine
Hx Acid Gases
C₂H₄O Ethylene Oxide
C₂H₆O Alcohol
O₃ Ozone
CH₄ Methane
(Combustible Gas)
H₂O₂ Hydrogen Peroxide
HCl Hydrogen Chloride
HCN Hydrogen Cyanide
HF Hydrogen Fluoride
H₂S Hydrogen Sulfide
NO₂ Nitrogen Dioxide
NOₓ Oxides of Nitrogen
SO₂ Sulfur Dioxide
H₂Se Hydrogen Selenide
B₂H₆ Diborane
GeH₄ Germane
AsH₃ Arsine
PH₃ Phosphine
SiH₄ Silane
HCHO Formaldehyde
C₂H₄O₃ Peracetic Acid
DMA Dimethylamine