

O & M Manual

MetriNet
Modbus-TCP

Communications Manual

 Home Office European Office

 Analytical Technology, Inc. ATI (UK) Limited
 6 Iron Bridge Drive Unit 1 & 2 Gatehead Business Park
 Collegeville, PA 19426 Delph New Road, Delph
 Phone: 800-959-0299 Saddleworth OL3 5DE
 610-917-0991 Phone: +44 (0)1457-873-318
 Fax: 610-917-0992 Fax: + 44 (0)1457-874-468
 Email: sales@analyticaltechnology.com Email: sales@atiuk.com

2
O&M Manual
Rev-B (6/21)

Table of Contents

Modbus-TCP Description ___ 4

1.1 General __ 4

1.2 Modbus-TCP Communication __ 4

1.3 Modbus-TCP Transmission Details __ 5

1.4 RJ45 Cable Connection __ 7

1.6 Setting PC to Locked IP Address (Disable DHCP) ___________________________________ 9

1.7 Setting MetriNet Address __ 10

1.8 Finding Lost IP Address __ 14

1.9 Modbus-TCP Interface Operation __ 15

1.10 MetriNet Modbus-TCP Data Structure __ 16

1.11 MetriNet OPC-UA Advanced Example __ 26

Table of Figures

Figure 1 - RJ45 Crimp Tool ... 7
Figure 2 - Modbus-TCP Interface Location ... 8
Figure 3 – Force PC to Specific Network Subnet .. 9
Figure 4 – Reaching Internal Lantronix Web Page with Firefox Browser. 10
Figure 5 – Internal Modbus-TCP Manager Page ... 11
Figure 6 – Internal IP Address Page ... 11
Figure 7 – Internal Modbus-TCP Reset Screen .. 11
Figure 8 - DeviceInstaller Identifies MetriNet Interface Connection 12
Figure 9 - DeviceInstaller Default Port Details ... 12
Figure 10 - DeviceInstaller Manual IP Settings ... 13
Figure 11 - DeviceInstaller Completed Port Assignment ... 13
Figure 12 - DeviceInstaller Updated Port Details at New IP .. 14
Figure 13 – Wireshark Finding Lost IP Via ARP Broadcast ... 14
Figure 14 - SimplyModbus Client Scan of INFO block at New IP 15
Figure 15 – Simply Modbus-TCP, S1/S2 Sensor Measure Data Block 19
Figure 16 – Simply Modbus-TCP, S1 Sensor Info Data Block 21
Figure 17 – Simply Modbus-TCP, Change S1 Delay Setting to 2.0 23
Figure 18 – Simply Modbus-TCP, Calibrate S2 Temperature to 24.0C 25
Figure 19 – KEPServer Channel Set-up For One Ethernet Port. 27
Figure 20 – KEPServer Cal/Config Window Device Registers. 28
Figure 21 – KEPServer Sensor Data Device Registers ... 28

ATI MetriNet Modbus-TCP Communications Manual

3

O&M Manual
Rev-B (6/21)

Figure 22 – KEPServer Sensor Info Device Registers. ... 29
Figure 23 – KEPServer System Info Device Registers. ... 29
Figure 24 – KEPServer Zero-Based-Addressing and Modbus-Byte-Order Features. ... 30
Figure 25 – KEPServer Real-Time Measurement Data (All) for Example System. 31
Figure 26 – KEPServer Sensor Info Settings (All) for Example System. 31

4
O&M Manual
Rev-B (6/21)

Modbus-TCP Description

1.1 General

MetriNet Instruments are available with two forms of Modbus digital
communication options: Modbus-RTU (RS485) and Modbus-TCP (Ethernet.) This
manual applies only to instruments supplied with the Modbus-TCP communication
option. The MetriNet utilizes a powerful built-in Lantronix XPORT Modbus bridge
device to enable Modbus-TCP capability.

It is important to note that Modbus-TCP devices only communicate with other
systems that are running the Modbus application protocol on Ethernet. You cannot
plug a MetriNet into your office Ethernet network and expect to have the MetriNet
talk to your computer, unless you have a Modbus protocol application running on
that computer.

The discussion of standard Modbus and Ethernet are vast, and well beyond
the ability to discuss here in great detail. The documentation for this option
assumes working network knowledge by the user.

1.2 Modbus-TCP Communication

It should be understood that Modbus-TCP is simply an application layer protocol
that is transferred over an Ethernet hardware link. The word "Ethernet" simply
refers to the common physical cable, perhaps running to an office PC.

In the OSI model, “Ethernet” is the lower part of the model, the physical transfer
method or the hardware. It says nothing about the way information is transferred,
which is specified near the top of the OSI model. In the common office network,
many different standard communication protocols are operating during normal
office use, like IP, TCP, etc. None of these are designed to handle the industrial
protocol formats, so that interface must be handled by a specific program that
recognizes the format. Because of this, a Modbus-TCP device cannot be directly
connected to your office network for transferring information unless an additional
program exists to decode the Modbus frames.

Per the Modbus Messaging on TCP Implementation Guide V1.0b, authored by
Modbus.org, a 5-layer Internet model is used for Modbus-TCP instead of the
familiar three-layer model for TCP/ASCII over serial line. This new standard
encapsulates standard Modbus function code and data contents into a higher level
TCP protocol.

ATI MetriNet Modbus-TCP Communications Manual

5

O&M Manual
Rev-B (6/21)

The physical layer is not specifically mentioned in the guide, therefore, the wiring
infrastructure generally just follows standard Ethernet wiring practices.

The Modbus “bus” structure in this case is an IP addressed direct link, not a bus
at all, and slave addresses become IP addresses. No slave ID is used in the
MetriNet, only an IP address. Also, the master/slave relationship in TCP/ASCII
becomes more of a client/server relationship in Modbus-TCP – where multiple
clients (masters) initiate requests to servers (slaves) for information. So, unlike
the serial implementation of bussed RTU/ASCII, the TCP implementation becomes
more “multi-master” in nature. However, even with all these variations, Modbus-
TCP data and Modbus-RTU/ASCII data are in the same format.

1.3 Modbus-TCP Transmission Details

The data for the protocol is packed into a specific structure inside a standard TCP
Packet. A user application program simply decodes the structure inside
the received TCP or UDP packet. To create the Modbus-TCP frame, the standard
Modbus data frame PDU (Protocol Data Unit) is appended by a new MBAP header
(Modbus Application Protocol) to make a larger transmission frame called the ADU
(Application Data Unit.) In order to send the new ADU over TCP, the registered
port number 502 is used by Modbus.org.

MODBUS PDU
The Modbus protocol is a messaging structure, widely used to establish master-
slave communication between intelligent devices. In serial format, a message sent
from a master to a slave contains a one-byte slave address, a one-byte command,
data bytes (depending on command), and a two byte CRC. The protocol is
independent of the underlying physical layer and is traditionally implemented using
RS232, RS422, or RS485 over a variety of media (e.g. fiber, radio, cellular, etc.)
The TCP format strips out the slave address and CRC and just uses the function
code and data. So, the basic structure of the PDU frame section is simply:

|<- Modbus PDU ->|
[FUNCTION][DATA]

The function code field of a message frame contains an eight-bit code in the range
of 1 ... 255 decimal. When a query message is sent from the master, the function
code field tells the slave device what kind of action to perform. Examples include
reading the contents of a group of registers, writing to a single register, writing to
a group of registers, and reading the exception status.

ATI MetriNet Modbus-TCP Communications Manual

6

O&M Manual
Rev-B (6/21)

When the slave device responds to the master, it uses the function code field to
indicate either a normal (error-free) response or that some kind of error occurred
(called an exception response). For a normal response, the slave simply echoes
the original function code. For an exception response, the slave returns a code
that is equivalent to the original function code with its most significant bit set to
logic 1.

The data field is constructed of one or more bytes and contains additional
information, which the slave must use to take the action defined by the function
code. This can include items like discrete and register addresses, the quantity of
items to be handled, and the count of actual data bytes in the field. If no error
occurs, the data field of a response from a slave to a master contains the data
requested. If an error occurs, the field contains an exception code that the master
application can use to determine the next action to be taken.

The data field can be nonexistent (of zero length) in certain kinds of messages.
For example, in a request from a master device for a slave to respond with its
communications event log (function code 0B hexadecimal), the slave does not
require any additional information. The function code alone specifies the action.

MODBUS ADU
Modbus-TCP adds a header to the PDU to get the full ADU transmission frame –

| MBAP HEADER ->| | Modbus PDU ->|
[TRANS ID] [PROT ID] [LENGTH] [UNIT ID] [FUNCTION][DATA]
| MODBUS-TCP ADU ->|

 Where:
 Transaction ID = 2 bytes set by client to uniquely identify the request
 Protocol ID = 2 bytes set by client (always 00 00)
 Length = 2 bytes identifying the number of bytes in the message
 Unit ID = 1 byte set by client to ID a slave connected on a remote serial line

MODBUS REGISTERS AND COILS
The PDU data portion of the Modbus-TCP follows the exact same register format
as the serial form of the Modbus-RTU protocol. Modbus protocol was originally
designed to transfer data to and from PLCs (Programmable Logic Controllers),
which organize data into groups of registers and coils. PLC registers containing
i/o information are called input registers and are numbered 30001 to 39999, while
registers containing data or the results of calculations are known as holding
registers and are numbered from 40001 to 49999. The term coils, on the other
hand, refers to discrete (0 or 1) inputs and outputs. Traditionally, these are inputs
from such things as switch closures and outputs to the coils of relays, which are
under the control of the PLC.

ATI MetriNet Modbus-TCP Communications Manual

7

O&M Manual
Rev-B (6/21)

All MetriNet data is aligned in the 16 or 32 bit values of the holding registers from
40001 to 49999, using only:

Function 3 – Read Holding Registers
Function 16 – Write Multiple Holding Registers

For more information, please refer to the “Modicon Modbus Protocol Reference
Guide” at http://www.modicon.com/techpubs/toc7.html or, “Modbus Protocol
Specification”, available for download at http://www.modbus-ida.org/specs.php.

1.4 RJ45 Cable Connection

The cable used for Modbus-TCP communication should meet the CAT5 standard
defined by the Electronic Industries Association and Telecommunications Industry
Association. It is readily available in lengths up to 100 ft. (30 m) with plugs on each
end.

To install an Ethernet cable in the MetriNet, pass the unterminated cable through
the cable gland nearest the location of the RJ45 connector on the Modbus-TCP
option board. Termination of Cat5/5e/6 cables is very easy and can be completed
quickly with the commonly available RJ45 crimp tool.

Figure 1 - RJ45 Crimp Tool

While professional results are optimized with the use of the termination tool and
custom cable lengths, patch cord style connection can be completed in some
cases by passing the finished RJ45 connectors through the MetriNet cable gland.
The connector will fit through the plastic part of the cable gland, and the rubber
grommet can be slit (some RJ45s may be too big for this.) Once the connector is
inside the enclosure, simply plug it into the jack provided on the Modbus-TCP
communication board. Be sure to adjust the rubber insert in the cable gland so
that the slit is on the bottom and then tighten the gland to seal around the wire.

http://www.modicon.com/techpubs/toc7.html
http://www.modbus-ida.org/specs.php

ATI MetriNet Modbus-TCP Communications Manual

8

O&M Manual
Rev-B (6/21)

1.5 Modbus-TCP Wiring Port

Once the Ethernet cable is properly terminated, it can be connected to the RJ45
port on the MetriNet. The MetriNet Modbus-TCP port is located in the lower right
corner of the back panel of the instrument. Connection is made via RJ45
connector. The MAC ID for the interface is listed on the port instrument label.

Once the Ethernet cable is connected, apply proper 12-24VDC power to the
MetriNet and make sure that “Ethr” is selected in the OPTIONS menu for “^Host
Comms.” The other end of the Ethernet cable can be connected to a PC so that
the IP address can be configured.

Figure 2 - Modbus-TCP Interface Location

There are two LEDS on the face of the RJ45 Cable interface. To the left of the
RJ45 (towards top of instrument) is the “link” LED –
Off No link
Amber 10 Mbps
Green 100 Mbps

To the right of the RJ45 (near bottom of instrument) is the “activity” LED –
Off No activity
Amber Half duplex
Green Full duplex

ATI MetriNet Modbus-TCP Communications Manual

9

O&M Manual
Rev-B (6/21)

1.6 Setting PC to Locked IP Address (Disable DHCP)

 The MetriNet is shipped with a default fixed IP address of 192.168.0.30. A new

value can be set with a PC in one of two ways: Via an internal webpage on the
MetriNet, or through the use of a special Lantronix software PC tool.

 Before digging into IP address details, it is important to note that an existing

network IP address cannot be reached unless both the client (your PC) and
server (the slave, MetriNet) are on the same net/subnet/mask level. For
example, assuming the Metrinet has an address at 192.168.0.30/255.255.255.0
and the client trying to make the connection is at 192.168.1.10, the MetriNet
cannot be reached at the 192.168.1 level. When setting an IP with a PC, it is
easiest to first lock the PC at a fixed IP address to ensure it can reach whatever
IP is already present now, or desired, on the MetriNet. The vast majority of
industrial applications will use some fixed IP address and not DHCP for
automatic settings.

 To lock your PC at a specific IP network address range -

1) Set laptop NIC port on a locked IP and subnet to stop DHCP (automatic IP)

service. In IPV4 properties on your PC’s Ethernet connection port, select
"Use the following IP Address" and set the PC to fixed IP of -
IP Address = 192.168.0.10 (this PC network address, not the MetriNet)
Subnet Mask = 255.255.255.0

Figure 3 – Force PC to Specific Network Subnet

ATI MetriNet Modbus-TCP Communications Manual

10

O&M Manual
Rev-B (6/21)

2) Once this IP/subnet is set, click OK to save and then close it all out. Turn

PC off then back on to place it on the new IP address set in step 1. The PC
will now be able to access any network device on 192.168.0.X (except for
0 and 10,) as the subnet mask 255.255.255 locks in the first three variables.
The default value for the MetriNet is 192.168.0.30, so it can now be reached
by this PC.

1.7 Setting MetriNet Address

 Once the user’s PC is on the proper net/subnet/mask level, the IP address for the

MetriNet can be set in one of two ways: Internal port Web page or Lantronix
Device-Installer software. The MetriNet port has a web page built into it, and it is
very easy to quickly change the IP address from any Internet browser whne the
port is already on the same net/subnet as the PC. The benefit of using the free
Lantronix software is that it can also indicate if the MetriNet and PC nets/subnets
don’t match.

 Option #1 – Internal Web Page
 The MetriNet interface has an internal webpage, which can be accessed using

any web browser, that enables the IP address to be changed very quickly. Once
the PC is set to the same net/subnet as the MetriNet, simply type the IP address
is the browser path window to get to the internal web page. See figure below for
an example where the MetriNet is sitting at 192.168.0.30, and the PC is at
192.168.0.10. Using Firefox as the browser, the first page that comes up on
connection is the password page.

Figure 4 – Reaching Internal Lantronix Web Page with Firefox Browser.

 At the password page, just click on OK and continue. Do not enter a password

or name.

ATI MetriNet Modbus-TCP Communications Manual

11

O&M Manual
Rev-B (6/21)

Figure 5 – Internal Modbus-TCP Manager Page

At the Manager page, click on Network.

Figure 6 – Internal IP Address Page

 On this Network page, enter the new IP address and mask desired. Then click
on OK. Finally, click on Apply Settings and changes will be saved, along with a
reset of the module. DO NOT CHANGE ANY OTHER SETTINGS.

Figure 7 – Internal Modbus-TCP Reset Screen

ATI MetriNet Modbus-TCP Communications Manual

12

O&M Manual
Rev-B (6/21)

 Option #2 - Device Installer

The second option for configuring the IP address is to use the free program called
“DeviceInstaller” from Lantronix -

 http://www.lantronix.com/products/deviceinstaller/

Once this program has been installed on a PC, plug in the MetriNet and connect
an Ethernet cable from the MetriNet communications port to an Ethernet port of
the PC running the program. Then, launch the DeviceInstaller program.

The DeviceInstaller program automatically searches for any connected Lantronix
interfaces connected to the PC – even on other nets. The big benefit of using this
program is that it can force an IP address change even if the MetriNet IP is not at
the proper net/subnet level. It does this as it accesses the MAC ID of the interface.
This can be a big benefit if the MetriNet IP address is unknown or at the wrong
address. The only caveat is, once the MetriNet is detected, the “assigned” subnet
must be the same as the current PC subnet.

Figure 8 - DeviceInstaller Identifies MetriNet Interface Connection

In this example above, the MetriNet IP for the actual interface is found outside the
PC’s reach. The PC is at 192.168.0.20 and the MetriNet here is at 169.254.25.25.
For this MetriNet port, we will force it to be at 192.168.0.21. To do this, simply click
on the actual IP address of the part now, “169.254.25.25” above. A window will
pop up indicating “The configuration could not be retrieved from the device”,
and just hit “OK.” Now the following detail screen will be shown –

Figure 9 - DeviceInstaller Default Port Details

http://www.lantronix.com/products/deviceinstaller/

ATI MetriNet Modbus-TCP Communications Manual

13

O&M Manual
Rev-B (6/21)

At this point, select “Assign IP” from the upper bar. A window will pop up asking
if you want to set the IP automatically, or to set it manually. Choose “Assign a
Specific IP Address.” The following screen will appear with entry fields for IP,
subnet, and gateway.

Figure 10 - DeviceInstaller Manual IP Settings

After the IP/subnet/gateway info is entered, hit “Next”, then click on “Assign.” Wait
for “progress of task bar” to complete the operation. You will now get a pop-up
screen again that shows “The configuration could not be retrieved from the
device”, just click OK. Then click “Finish” to clear window -

Figure 11 - DeviceInstaller Completed Port Assignment

ATI MetriNet Modbus-TCP Communications Manual

14

O&M Manual
Rev-B (6/21)

The updated IP screen detail for the port will show the following new information

Figure 12 - DeviceInstaller Updated Port Details at New IP

You can now close this program, and the MetriNet is fixed on these new IP settings.
You must cycle power to the MetriNet for this new IP to take effect.

1.8 Finding Lost IP Address

If the current IP address is lost for some reason and was not written on the MetriNet
enclosure, there are two easy ways to figure it out. The first method was used in
the prior example with DeviceInstaller.

In addition, a PC tool like “Wireshark” can be run on the port. At some point in the
dialog right after the MetriNet is plugged in, a “Gratuitous ARP” will be broadcast
from the MetriNet to announce its IP. You can see it in the figure below and it can
be easily identified because the MAC ID for the interface is also in that line
(00:80:A3:DA:2B:5F.) The MAC ID for the MetriNet is written on every Lantronix
interface module.

Figure 13 – Wireshark Finding Lost IP Via ARP Broadcast

ATI MetriNet Modbus-TCP Communications Manual

15

O&M Manual
Rev-B (6/21)

1.9 Modbus-TCP Interface Operation

Once the cable is connected, the IP is set, Modbus-TCP data can be transferred
across the network just like other Ethernet-based connection.

We recommend a simple master Modbus-TCP test program, by the name of
SimplyModbus-TCP, for any pre-testing of Modbus slaves. This particular
program is very easy to use and provides many same-page fields to enter all
required communication parameters on one screen. In addition, this test program
allows the user the flexibility to set different data types by combining various
numbers of 16-bit registers into any desired field length.
http://www.simplymodbus.ca/TCPmaster.htm

Here is a screenshot of the Simply Modbus-TCP PC tool. Note that the MetriNet
only responds to “holding” register requests (40000 block,) so only function code
03 is accepted.

Endian arrangement is set in the “high byte first” and “high word first”
selections. Endian byte swapping must be correct to see data.

Figure 14 - SimplyModbus Client Scan of INFO block at New IP

http://www.simplymodbus.ca/TCPmaster.htm

ATI MetriNet Modbus-TCP Communications Manual

16

O&M Manual
Rev-B (6/21)

1.10 MetriNet Modbus-TCP Data Structure

Once the TCP interface has been established at the proper IP address, Modbus-
TCP operates just like Modbus RTU. The data map for the MetriNet is broken into
logical blocks: Live measured data that changes constantly, information that only
changes when a user adjustment is made, and finally an area dedicated to
configuration and calibration via user entry. The MetriNet only recognizes Modbus
functions 03 and 16, where 03 is used for all the INFO and MEASURE areas, and
16 is only allowed in the CONFIGURATION and CALIBRATION area.

Please refer to the M-Node O&M Manual for detailed information regarding the
probe Modbus register and calibrations descriptions, values, settings and limits.

1-MB 40001-40009 = SYSTEM INFO BLOCK
 (READ ONLY)
 9 registers. MetriNet information.

2-MB 41001-41096 = SENSOR MEASURE BLOCK
 (READ ONLY)
 96 registers (12 x 8.) Measured sensor data. This area is normally

read continuously, as it is actively changing.

3-MB 42001-42144 = SENSOR INFO BLOCK
 (READ ONLY)
 144 registers (18 x 8.) Sensor configuration settings. While it could

be read at any time, this area is only updated after a power up, or after
a “write” of new data has occurred.

4-MB 43001-43004 = SYSTEM CONFIGURATION/CAL BLOCK

(WRITE ONLY)
4 registers. This area is a unique “router” window that allows the user
to write new data to a specific location.

So, during normal polling, the SENSOR MEASURE BLOCK would typically be
read continuously, as it is always changing. The INFO BLOCKs would likely only
be read once at system start-up, and then after any CONFIGURATION or
CALIBRATION change has been performed by user. This method greatly
minimizes the bandwidth requirement for instrument by avoiding re-reading data
which is not changing. The maximum polling rate by external master is 100 mS
(old received frame stop-to-new frame start.)

If the Wr Lockcode is enabled in the MetriNet OPTIONS Menu, an un-lock write
security code must be included as part of the write command in order to perform a
write to any of these registers. See the unlock code section later in the manual on
the CONFIGURATION/CAL portion of Modbus map.

ATI MetriNet Modbus-TCP Communications Manual

17

O&M Manual
Rev-B (6/21)

1-SYSTEM INFO - MB 40001 start, 9 registers (READ ONLY)
MetriNet information gets the first block in the overall map and starts at MB 40001. An
example of this data block is shown in figure 14.

Register Data Type Sensor Description Data Format
40001 UINT(16-bit) MetriNet Status 1 Binary
40002 UINT(16-bit) MetriNet Status 2 Binary
40003 UINT(16-bit) MetriNet Number of Sensors 1 to 8
40004 UINT(16-bit) MetriNet NA
40005 UINT(16-bit) MetriNet NA
40006 UINT(16-bit) MetriNet NA
40007 UINT(16-bit) MetriNet NA
40008 UINT(16-bit) MetriNet NA
40009 UINT(16-bit) MetriNet NA

Register Bit Description
40001 0 (LSB) Sensor 1 Comm Error

1 Sensor 2 Comm Error
2 Sensor 3 Comm Error
3 Sensor 4 Comm Error
4 Sensor 5 Comm Error
5 Sensor 6 Comm Error
6 Sensor 7 Comm Error
7 Sensor 8 Comm Error
8 Undefined
9 Undefined
10 Undefined
11 Undefined
12 Undefined
13 Undefined
14 Undefined
15 Undefined

Register Bit Description
40002 0 Solenoid Output 0 = Valve Closed, 1 = Valve Open
 1 Opto Input 0 = Input OFF, 1 = Input ON
 2 Opto Output 0 = Output OFF, 1 = Output OFF
 3 – 15 Undefined

ATI MetriNet Modbus-TCP Communications Manual

18

O&M Manual
Rev-B (6/21)

2- SENSOR MEASURE – MB 41001 start, 96 registers (READ ONLY)
This live measurement block is “read-only” data via Modbus Function 03 - Read Holding
Registers, and can be accessed from 41001 to 41096. To read all sensor data at once
for 8 sensors, call for a 96 register read starting at MB41001. Otherwise, only poll the
register range corresponding to the total number of sensors connected.
NOTE – First 4 values for each sensor are 32-bit signed integers, last 4 are 16-bit.

Sensor #1 (12 registers)

Register Data Type Description Data Format
41001-41002 DINT(32-bit) Main Value 1000 = 1.000
41003-41004 DINT(32-bit) Main Units ASCII (i.e. ppm)
41005-41006 DINT(32-bit) Raw Sensor Value 1000 = 1.000
41007-41008 DINT(32-bit) Temperature (F/C) 25000= 25.000C
41009 UINT(16-bit) Output Value (VDC) 2500 = 2.500 VDC
41010 UINT(16-bit) Status 1 Binary
41011 UINT(16-bit) Status 2 Binary
41012 UINT(16-bit) *Sensor ID ASCII, (i.e. H0)

Bit Reg 41010 Reg 41011
0 (LSB) ALARM_A EE_INIT_FAIL
1 ALARM_B MAIN_UNITS_HI
2 ALARM_C MAIN_UNITS_LO
3 ALARM_D MAIN_INPUT_ERR
4 ALARM_E TC_UNITS_HI
5 ENTRY_OUT_OF_RANGE TC_UNITS_LO
6 ENTRY_ACCEPTED TC_INPUT_ERR
7 ENTRY_FAIL CAL_MAIN_SLOPE_HI
8 MAIN_CAL_PASS CAL_MAIN_SLOPE_LO
9 MAIN_CAL_FAIL CAL_MAIN_ZERO_HI
10 TC_CAL_PASS CAL_MAIN_OFFSET_HI
11 TC_CAL_FAIL MAIN_UNSTABLE
12 TC_F CAL_TC_OFFSET_HI
13 SENSOR_LOCK TC_UNSTABLE
14 NU NU
15 NU NU

*Sensor ID is a unique two-byte ASCII code that identifies that sensor base model number. Q32H0 model would
show here as “H0.” Future feature, may not be currently available on all sensors.

Sensor #2-#8 (12 total registers each)

Snsr 2
Reg

Snsr 3
Reg

Snsr 4
Reg

Snsr 5
Reg

Snsr 6
Reg

Snsr 7
Reg

Snsr 8
Reg

Data
Type

Sensor
Data

Data Format

41013 41025 41037 41049 41061 41073 41085 DINT Main Value 1000=1.000
41015 41027 41039 41051 41063 41075 41087 DINT Main Units ASCII (ie _ppm)
41017 41029 41041 41053 41065 41077 41089 DINT Raw Value 32000=32.000
41019 41031 41043 41055 41067 41079 41091 DINT Temperature 25000=25.000

ATI MetriNet Modbus-TCP Communications Manual

19

O&M Manual
Rev-B (6/21)

41021 41033 41045 41057 41069 41081 41093 UINT Output Value 2500=2.5000
41022 41034 41046 41058 41070 41082 41094 UINT Status 1 Binary
41023 41035 41047 41059 41071 41083 41095 UINT Status 2 Binary
41024 41036 41048 41060 41072 41084 41096 UINT ID ASCII

Note: If there is a comm error (loss of communications with a sensor), the error bit
corresponding to the sensor will be set in register 41001. The data in the sensor
registers will hold the last valid read from the sensor.

Figure 15 – Simply Modbus-TCP, S1/S2 Sensor Measure Data Block

ATI MetriNet Modbus-TCP Communications Manual

20

O&M Manual
Rev-B (6/21)

3- SENSOR INFO – MB 42001 start, 144 registers (READ ONLY)
These are data registers in the sensor that only change if the user sets in a new
value. Therefore, these registers are read at power up from the sensors and kept in the
MetriNet Modbus registers so the host may read them at any time. If a “communication
timeout” error occurs, or a write command is received from the host, the MetriNet will read
these registers from the sensors and update the data held in the MetriNet Modbus
registers. This block would be read-only though Modbus Function 03 - Read Holding
Registers.

18 Modbus Registers Per Sensor, all UINT(16)

Snsr 1
Reg

Snsr 2
Reg

Snsr 3
Reg

Snsr 4
Reg

Snsr 5
Reg

Snsr 6
Reg

Snsr 7
Reg

Snsr 8
Reg

Sensor
Data

Data Format

42001 42019 42037 42055 42073 42091 42109 42127 4Slope 100=100%
42002 42020 42038 42056 42074 42092 42110 42128 1,4Offset (sensor dependent)
42003 42021 42039 42057 42075 42093 42111 42129 Delay 10=1.0min
42004 42022 42040 42058 42076 42094 42112 42130 1Alarm A (sensor dependent)
42005 42023 42041 42059 42077 42095 42113 42131 1Alarm B (sensor dependent)
42006 42024 42042 42060 42078 42096 42114 42132 Slp Alarm 80=80%
42007 42025 42043 42061 42079 42097 42115 42133 Tmr Limit 90=90 days
42008 42026 42044 42062 42080 42098 42116 42134 1,2VoutHI (sensor dependent)
42009 42027 42045 42063 42081 42099 42117 42135 1,2VoutLO (sensor dependent)
42010 42028 42046 42064 42082 42100 42118 42136 TcMode 0 = F, 1 = C
42011 42029 42047 42065 42083 42101 42119 42137 3Tag1 0x70,0x48=”p”,”H”
42012 42030 42048 42066 42084 42102 42120 42138 3Tag2 …
42013 42031 42049 42067 42085 42103 42121 42139 3Tag3 …
42014 42032 42050 42068 42086 42104 42122 42140 3Tag4 …
42015 42033 42051 42069 42087 42105 42123 42141 3Tag5 …
42016 42034 42052 42070 42088 42106 42124 42142 3Tag6 …
42017 42035 42053 42071 42089 42107 42125 42143 3Tag7 …
42018 42036 42054 42072 42090 42108 42126 42144 3Tag8 …

1 Sensor dependent variable. The formatting of these variables are based on the specific data value

from that sensor. See the M-Node sensor manual for details.
2 There are no analog voltage outputs of the bussed MetriNet system. However, the scaled 0-2.5V value

from the sensor can be used to simplify the creation of the scale value for other purposes.
3 The Tag values are compressed ASCII characters stored in the sensor, and together they create a 16

character string for unique sensor identification. The user may change these to whatever they desire.
For a Tag entry of 0x70 0x48 (hex 70, 48,) you would store the characters “pH”. Future feature, may be
locked at current value on current sensors.

4 The Slope and Offset values above in RED are read-only, and may not be written to by the user. These
values will update on accepted calibration.

Note that this data area is contiguous, so sensor #2 slope register setting is located
right after the last Tag register setting for sensor #1. The table above also shows the

ATI MetriNet Modbus-TCP Communications Manual

21

O&M Manual
Rev-B (6/21)

specific register location across all 8 sensors.

Figure 16 – Simply Modbus-TCP, S1 Sensor Info Data Block

ATI MetriNet Modbus-TCP Communications Manual

22

O&M Manual
Rev-B (6/21)

4- SYSTEM CONFIGURATION/CAL – MB 43001 start, 4 registers (WRITE ONLY)
This map section is somewhat unique, as it is special read-write window. User entered
data changes are all made here through the same secure 4-register window. There is
nothing to be “read” here, as these are the data entry functions for more complex
configuration changes and calibrations. The result of calibrations must be determined by
the result-flags from that specific sensor.

For optimum security, these areas are tied to the appropriate system functions using a
router scheme where either the sensor or the main system settings are specified as part
of the 4-register data write. The window registers for writing data are always at 43001-
43004. See below. All 4 elements are part of the full write commend. Only MB function
16(10 hex) is allowed here. Data which may be written to is highlighted in GREEN in the
SENSOR INFO table of section 3 above. Data marked in RED may not be written, as
that data results from a calculated function.

An optional unlock code can be included if the “Wr Lock” feature is enabled on the
MetriNet. This is a write protection lock-out, so when enabled on the MetriNet, a serial
calibration or configuration change request must include the proper unlock code for every
write-command, or the command will be ignored.

Example 1 -
CONFIGURATION (4 Registers)

Register Data Type Sensor/system Description Data Format
43001 UINT(16) 1 1-8 Sensor, 9 is system 1=1
43002 UINT(16) 42003 Specific Modbus Register 42003=42003
43003 UINT(16) 20 Data Value Specific to Reg
43004 UINT(16) 0 Optional Unlock Code User defined

Raw Hex Byte MB SEND => 01 10 0B B8 00 04 08 00 01 A4 13 00 14 00 00 88 34
The above example would attempt to write a value of 20 to location 42003 of sensor #1
– at MetriNet slave address #1. In Modbus-TCP, slave address must always be 1, as
each MetriNet requires a unique IP address. Looking above at the map of the sensor info
data, this means that the user is trying to update the DELAY setting of sensor #1 to 2.0
minute. No lock is required here, so that register simply contains 0. Once this is written,
the user can either check the specific flags for that sensor to see the results, or simply re-
read the SENSOR INFO block of data to see that the value has been updated.

This data is sent through SimplyModbus as shown in figure 5 below. Note that the value
for S1 Delay register 42003 on the left window has changed to 20.

ATI MetriNet Modbus-TCP Communications Manual

23

O&M Manual
Rev-B (6/21)

Figure 17 – Simply Modbus-TCP, Change S1 Delay Setting to 2.0

Example 2 -
CONFIGURATION (4 Registers)

Register Data Type Sensor/system Description Data Format
43001 UINT(16) 1 1-8 Sensor, 9 is system 1=1
43002 UINT(16) 42010 Specific Modbus Register 42010=42010
43003 UINT(16) 1 Data Value TcMode=Fahrenheit
43004 UINT(16) 0 Optional Unlock Code User defined

Raw Hex Byte MB SEND => 01 10 0B B8 00 04 08 00 01 A4 1A 00 01 00 00 45 F1
This example illustrates an entry to the TcMode setting of sensor #1 temperature, which
will alter the temperature display to Fahrenheit degrees by writing a value of 1 to Modbus
register 42010. See the sensor register map on the previous page for sensor Modbus
register numbers. The MetriNet slave address is #1. No lock is required here, so that
register simply contains 0. This is a good command to use to verify communications as
the MetriNet displays the temperature for the selected sensor on the lower display, so
you can immediately see that the command is working correctly. Once this is written, the
user can either check the specific flags for that sensor to see the results, or simply re-
read the SENSOR INFO block of data to see that the value has been updated.

ATI MetriNet Modbus-TCP Communications Manual

24

O&M Manual
Rev-B (6/21)

Example 3 -
CONFIGURATION (4 Registers)

Register Data Type Sensor/system Description Data Format
43001 UINT(16) 5 1-8 Sensor, 9 is system 5
43002 UINT(16) 42077 Specific Modbus Register 42077=42077
43003 UINT(16) 5000 Data Value 5000
43004 UINT(16) 123 Optional Unlock Code User Defined

Raw Hex Byte MB SEND => 01 10 0B B8 00 04 08 00 05 A4 5D 13 88 00 7B 21 73
So, the above example would attempt to write a value of 5000 to location 42077 of sensor
#5 – at MetriNet slave address #1. A lock code is included this time, as the lock option is
set on the MetriNet. Looking above at the map of the sensor info data, this means that
the user is trying to update the ALARM B setting of sensor #5 to 5.000. Once this is
written, the user can either check the specific flags for that sensor to see the results, or
simply re-read the SENSOR INFO block of data to see that the value has been updated.

Note how the window register used in every example is always the same, 43001- 43004.
All data writes occur through this 4 register window.

CALIBRATIONS
In addition to sending updated value to several registers of the system, sensor
calibrations can be made from the serial interface if absolutely required, but the user
must fully understand the weaknesses of this “blind” approach. Values can be sent
directly to the sensor to force a specific calibration point on a user entered value.

NOTE: While calibration over the Modbus-TCP interface is possible, it is not

recommended. ATI always recommends removal, cleaning, and inspection
of all sensors prior to calibration at LCD/keypad. This avoids the possibility
of calibration on unknown solutions or standards, and also avoids the
possibility of erroneous calibrations resulting from residual foulants or
undetected sensor damage. Sensors can be calibrated quickly and easily
via the user interface on the MetriNet transmitter.

Calibrations are done the same way as they are for configuration, using the same 4-
register “window” structure used in the CONFIGURATION cases. However, the user
must use unique register values for each of the calibration function calls. There are 5
total calibration registers, but not all of them apply to every sensor. Consult M-Node
manual for details on how calibrations work and which registers are utilized for each
version.

Universal Calibration Window Registers (unique to sensor type, not all apply. See M-
Node manual.)
43006 Calibrate Sensor Temperature Element
43007 Calibrate Sensor Span
43008 Calibrate Sensor Zero
43009 Calibrate Sensor Offset
43010 Sensor Reset Defaults

ATI MetriNet Modbus-TCP Communications Manual

25

O&M Manual
Rev-B (6/21)

Example 1 -
CALIBRATION (4 Registers)

Register Data Type Sensor/system Description Data Format
43001 UINT(16) 2 1-8 Sensor, 9 is system 2
43002 UINT(16) 43006 Specific Modbus Register 43006
43003 UINT(16) 240 Data Value 240
43004 UINT(16) 0 Optional Unlock Code 0

Raw Hex Byte MB SEND => 01 10 0B B8 00 04 08 00 02 A7 FE 00 F0 00 00 57 27
So, the above example would attempt to write a value of 240 to calibration register
location 43006 (Cal Temperature) of sensor #2 – at MetriNet slave address #1. This
means that the user is trying to calibrate the temperature element of sensor #2 to 24.0C.
No lock code is included in this case, as lock option is OFF in the MetriNet. Once this is
written, the user can either check the specific flags for that sensor to see the results, or
simply re-read the SENSOR MEASURE block of data to see that the value has been
updated.

Note below that once the data above is written to the proper cal/config window, the S2
Temperature value at 41019 has been updated to 2400 (24.0 C,) so calibration was
successful.

Figure 18 – Simply Modbus-TCP, Calibrate S2 Temperature to 24.0C

ATI MetriNet Modbus-TCP Communications Manual

26

O&M Manual
Rev-B (6/21)

1.11 MetriNet OPC-UA Advanced Example

To aid in the set-up of PLCs and computers, a brief example is built here around
a mainstream industrial OPC tool called “KEPServerEX.” This OPC UA tool allows
complete visualization of the entire multi-sensor map, and also allows the user to
set data types for all the objects in the Modbus map. This tool represents a very
comprehensive utility for a real industrial application, as it can move the collected
data out from the PC in a number of ways. The example assumes that the user is
already familiar with this tool or similar OPC tools, but even if they are not, it points
out some common set-up issues that more adanced can aid in sorting out
connection problems to the MetriNet. This tool is very similar to many PLC Modbus
OPC configuration tools on the market today.

KEPServerEx
KEPServerEX is an OPC UA based tool that provides numerous hardware and
protocol driver tools for connecting a wide number of industrial devices. By
running as a background PC live server application, the tool allows the user to
group vastly different types networks together on one PC and collect data in a
common format. In addition, KEPServerEX provides a wide range of advanced
features that allow logging, diagnostics, and movement of data to local servers or
even Internet servers online in IIoT applications.

In the following application, the project is built around a KEPServerEx 6.5 suite
that includes only a Modbus-TCP serial driver. Many other drivers can be added
in parallel.
https://www.kepware.com/en-us/products/kepserverex/suites/modbus-suite/

As shown is section 1.10, there are 4 distinct areas in the MetriNet Modbus
memory map. Three of these areas are contiguous read-only data areas, and the
fourth is a special window area used for writing new data to the sensors. There
are numerous ways to break this map up in networking OPC tools, but an example
is shown here that creates separate “devices” in an OPC server that all have
different contiguous memory areas. Although the “devices” are really all just data
blocks from the same MetriNet/Q52, we break the map up this way so that only the
live sensor data area is continuously polled for updates by the OPC tool. The other
sections may be manually polled as needed, as they only change when new data
values are written. This limits network bandwidth to focus on only the data which
is continuously changing. This is only one of many ways to break this application
down, and KepServer provides tremendous flexibility for other options.

To begin to build this application, the entire Q52 access is built into one “channel”
called “MetriNet Modbus-TCP,” and each “Device” is then set to represent a
different section of the 4 areas of the Modbus memory map.

https://www.kepware.com/en-us/products/kepserverex/suites/modbus-suite/

ATI MetriNet Modbus-TCP Communications Manual

27

O&M Manual
Rev-B (6/21)

Once the channel configuration has been established, the memory map sections
are set up as separate devices to collect data for display in the same way as the
Modbus map structure. There are many ways to accomplish this, but this method
is chosen in the example because the “Q52 Sensor Data,” which is live, can be
polled continuously. The static data for “Sensor Info” and “System Info” can be
polled as required – as it doesn’t change unless a change is made by the user.
See figure below.

Figure 19 – KEPServer Channel Set-up For One Ethernet Port.

Setting up the sensors is then a simple matter of plugging in the register locations
for all variables in all the map areas/devices. We use S1, S2, and S3 in the tag
names as an easy way to identify the individual sensors, but note that the units of
“ppm”, “uS”, and “NTU” also appear in the data blocks and show the user which
sensor is located at that register block. By setting the KEPServer application up
this way, the user can visualize all the sensor live measurements in the section of
data at “Sensor Data,” and then jump over to view the more static values in the
other screens as needed.

Going through each device section of the application, you can see the register
values are set to the contiguous memory areas referenced in the operating manual
map shown earlier in each case. Note that in this tool “address” actually translates
to “register” due to a specific setting in the tool. The “address” and “register” names
in Modbus mean two different things, and a Modbus register number of 40001 is
actually at Modbus address 40000 – so these two terms are off by one count. In
this KEPServer tool, a special setting called “Zero Based Addressing” allows the
register value to appear as the address value in our example – so it matches the
manual memory map above.

ATI MetriNet Modbus-TCP Communications Manual

28

O&M Manual
Rev-B (6/21)

Note also that Modbus Byte Order feature must be enabled and properly
configured to read the high-low byte order correctly. See figure 12 below for byte
order and zero-byte addressing setting. The final device settings are all shown
below.

Figure 20 – KEPServer Cal/Config Window Device Registers.

Figure 21 – KEPServer Sensor Data Device Registers

ATI MetriNet Modbus-TCP Communications Manual

29

O&M Manual
Rev-B (6/21)

Figure 22 – KEPServer Sensor Info Device Registers.

Figure 23 – KEPServer System Info Device Registers.

ATI MetriNet Modbus-TCP Communications Manual

30

O&M Manual
Rev-B (6/21)

In addition to setting up all data sections/devices, you must ensure that the Modbus
byte order is the proper Endian format, and is swapped if necessary. In addition,
enabling “Zero-byte Addressing” in this tool allows the registers to be displayed as
we have done here (due to address vs register +1 issue.) See figure.

Figure 24 – KEPServer Zero-Based-Addressing and Modbus-Byte-Order Features.

IMPORTANT – Ensure Modbus byte order and register vs. address
terminology is correct for your network master/tool when setting up the
Q52.

Now that all data has been set-up in the tool, the server can be launched to run
the current object and begin collecting data (Launch OPC quick Client.) The data
can then be easily viewed in each section of the map as shown in the figures below,
and logging can be enabled if desired. Although not shown below, System Info
would be displayed in the same way.

The power of this tool is seen in the structured collection and visualization of the
Modbus data, and the ability to very easily manage the different types of data
collected, such as INT, DINT, STRINGS, etc. Although limited in overview in the
example presentation, “tags” on data become a very powerful way to label and
manage complex information. Finally, This OPC sever can manage the offload of
the collected data via newer protocols like MQTT to other servers or sites, including
cloud sites such as ThingWorx.

ATI MetriNet Modbus-TCP Communications Manual

31

O&M Manual
Rev-B (6/21)

Figure 25 – KEPServer Real-Time Measurement Data (All) for Example System.

Figure 26 – KEPServer Sensor Info Settings (All) for Example System.

PRODUCT WARRANTY

Analytical Technology, Inc. (Manufacturer) warrants to the Customer that if any part(s)
of the Manufacturer's equipment proves to be defective in materials or workmanship
within the earlier of 18 months of the date of shipment or 12 months of the date of start-
up, such defective parts will be repaired or replaced free of charge. Inspection and repairs
to products thought to be defective within the warranty period will be completed at the
Manufacturer's facilities in Collegeville, PA. Products on which warranty repairs are
required shall be shipped freight prepaid to the Manufacturer. The product(s) will be
returned freight prepaid and allowed if it is determined by the manufacturer that the part(s)
failed due to defective materials or workmanship.

 This warranty does not cover consumable items, batteries, or wear items subject
to periodic replacement including lamps and fuses.

 Gas sensors carry a 12 months from date of shipment warranty and are subject to
inspection for evidence of misuse, abuse, alteration, improper storage, or extended
exposure to excessive gas concentrations. Should inspection indicate that sensors have
failed due to any of the above, the warranty shall not apply.

 The Manufacturer assumes no liability for consequential damages of any kind, and
the buyer by acceptance of this equipment will assume all liability for the consequences
of its use or misuse by the Customer, his employees, or others. A defect within the
meaning of this warranty is any part of any piece of a Manufacturer's product which shall,
when such part is capable of being renewed, repaired, or replaced, operate to condemn
such piece of equipment.

 This warranty is in lieu of all other warranties (including without limiting the
generality of the foregoing warranties of merchantability and fitness for a particular
purpose), guarantees, obligations or liabilities expressed or implied by the Manufacturer
or its representatives and by statute or rule of law.

 This warranty is void if the Manufacturer's product(s) has been subject to misuse
or abuse, or has not been operated or stored in accordance with instructions, or if the
serial number has been removed.

 Analytical Technology, Inc. makes no other warranty expressed or implied except
as stated above.

WATER QUALITY MONITORS

Dissolved Oxygen
Free Chlorine

Combined Chlorine
Total Chlorine

Residual Chlorine Dioxide
Potassium Permanganate

Dissolved Ozone
pH/ORP

Conductivity
Hydrogen Peroxide

Peracetic Acid
Dissolved Sulfide
Residual Sulfite

Fluoride
Dissolved Ammonia

Turbidity
Suspended Solids

Sludge Blanket Level

MetriNet Distribution Monitor

GAS DETECTION PRODUCTS

NH3 Ammonia
CO Carbon Monoxide
H2 Hydrogen
NO Nitric Oxide
O2 Oxygen
CO Cl2 Phosgene
Br2 Bromine
Cl2 Chlorine
ClO2 Chlorine Dioxide
F2 Fluorine
I2 Iodine
HX Acid Gases
C2H4O Ethylene Oxide
C2H6O Alcohol
O3 Ozone
CH4 Methane
 (Combustible Gas)
H2O2 Hydrogen Peroxide
HCl Hydrogen Chloride
HCN Hydrogen Cyanide
HF Hydrogen Fluoride
H2S Hydrogen Sulfide
NO2 Nitrogen Dioxide
NOx Oxides of Nitrogen
SO2 Sulfur Dioxide
H2Se Hydrogen Selenide
B2H6 Diborane
GeH4 Germane
AsH3 Arsine
PH3 Phosphine
SiH4 Silane
HCHO Formaldehyde
C2H4O3 Peracetic Acid
DMA Dimethylamine

	Modbus-TCP Description
	1.1 General
	1.2 Modbus-TCP Communication
	1.3 Modbus-TCP Transmission Details
	1.4 RJ45 Cable Connection
	1.6 Setting PC to Locked IP Address (Disable DHCP)
	1.7 Setting MetriNet Address
	1.8 Finding Lost IP Address
	1.9 Modbus-TCP Interface Operation
	1.10 MetriNet Modbus-TCP Data Structure
	1.11 MetriNet OPC-UA Advanced Example

