Delivering cost-effective solutions with FilterSmart & EchoSmart
The Punta Gorda WTP is a 10MGD surface drinking water facility located just east of Punta Gorda Florida. The process includes floc tanks, four Solids Contact Units (SCUs) which are a form of upflow clarifier, which then feed two Greenleaf Filters with four cells each. The filters are backwashed every 70 hours regardless of head loss. High backwash flow rate is 5200gpm. The total cost to treat 1000 gallons of drinking water is $1.73 (£1.37).
The plant became aware of the FilterSmart Media Level and Turbidity Monitors in 2013 when the Utilities Director attended a presentation on FilterSmart at the AL/FL Joint Rural Water Conference and information was passed to the Plant Supervisor. A field trial was arranged and equipment purchased to outfit the filters.
Filter run times extended from 70 to 120 hours
During the field trial, it was noted that the loading in the filters was very light (see figure 1). This can be seen in the relatively low turbidity measured during the backwash. Since the backwash schedule was based on time and not head loss, the suggestion was made to incrementally increase the Filter Run Times (FRTs) until the head loss value was reached. FRTs were increased to roughly 150 hours at one point, but were backed off to 120 hours due to various concerns. This initial process adjustment resulted in a 42% decrease in backwash water consumption annually at a value of approximately $65,000 (£50,400).
Figure 1. Graph of Media Level and Turbidity vs Time. Max Turbidity is 50NTU. Media expansion is approx 30%.
High rate backwash flow duration reduced four minutes
Once the instruments were purchased and installed, backwash data also indicated that the high rate portion of the backwash was longer than necessary, and was reduced by four minutes (see figure 2). This adjustment resulted in a savings of approximately 22,100 gallons of wash water per wash, at a value of $21,000 (£16,000) annually.
Together, these two simple adjustments to the backwash process resulted in $86,000 (£66,700) in savings the first year. These savings are more than twice the total price of the instruments.
Figure 2. Four minutes of over-washing eliminated.
Dramatic savings through sludge measurement in drying & handling process
The flow of water in the SCUs is up through a blanket of sludge and into collection pipes which send the water to the filters. The sludge blanket rises to a level where it cascades into a trough, from which it is pumped to the drying process (see figure 3).
Figure 3. Solids Contact Unit.
An EchoSmart sludge blanket monitor was installed in each of the four sludge troughs, with the signals used to control the sludge pumps. The goal was to keep the sludge level in the troughs within a 6-8 inch range. Previously, the sludge pumps were turned on and off manually, which produced inconsistent results. Using the EchoSmart blanket level to control the pumps eliminated these inconsistencies, and greatly reduced the hydraulic loading to the sludge drying train (see figure 4).
Figure 4. Blanket Level Trend in SCU.
Perhaps the most unexpected and significant savings came from the sludge drying process. Backwash water and the sludge from the SCUs first go to a decant tank where the sludge settles and the supernatant is returned to the headworks. The settled sludge goes to one of a dozen three-walled drying cells with underdrains. A layer of sand is spread in the cells to protect the underdrain from the action of the front-end loader. Previously, all 12 cells were needed. With the reduced hydraulic loading, only one or two cells are now needed. Consequently, the amount of sand has been greatly reduced. According to the Plant Supervisor:
“We used to order between $200,000 (£155,200) and $300,000 (£232,800) of sand a year. Since we implemented the blanket monitors, we haven’t ordered sand in a couple of years.”
Brian Fuller, Utilities Director
In addition to these documented savings, there are others that haven’t been documented. For example, the driver of the front end loader is free to resume other maintenance activities. Fuel for the front end loader is reduced. Polymer use prior to the sludge press has been reduced. Tipping fees to haul the sludge to the dump have been greatly reduced.
Summary
All told, the savings to the plant in the first couple of years after installing the FilterSmart and EchoSmart monitors could easily reach over $500,000 (£419,000).
“We love these instruments. They’ve given us data that we can use to make decisions that have saved us a lot of money!”
Badger Meter continues to invest in its industry-leading smart water offerings. and is pleased to announce the acquisition of Syrinix, Ltd, a privately held provider of intelligent water monitoring solutions.
Badger Meter continues to invest in its industry-leading smart water offerings. and is pleased to announce the acquisition of Syrinix, Ltd, a privately held provider of intelligent water monitoring solutions.
A global company with a caring culture. We have a team of experts on hand to help with any product or support query you may have. Contact us and experience ATi’s exemplary customer support.
Stay up to date with our latest innovations, solutions, projects and announcements by signing up to our newsletter.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.